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ABSTRACT
Currently, psychiatric practice lacks reliable predictive tools and a sufficiently detailed 
mechanistic understanding of suicidal thoughts and behaviors (STB) to provide timely 
and personalized interventions. Developing computational models of STB that integrate 
across behavioral, cognitive and neural levels of analysis could help better understand 
STB vulnerabilities and guide personalized interventions. To that end, we present a 
computational model based on the active inference framework. With this model, we 
show that several STB risk markers – hopelessness, Pavlovian bias and active-escape 
bias – are interrelated via the drive to maximize one’s model evidence. We propose four 
ways in which these effects can arise: (1) increased learning from aversive outcomes, (2) 
reduced belief decay in response to unexpected outcomes, (3) increased stress sensitivity 
and (4) reduced sense of stressor controllability. These proposals stem from considering 
the neurocircuits implicated in STB: how the locus coeruleus – norepinephrine (LC-NE) 
system together with the amygdala (Amy), the dorsal prefrontal cortex (dPFC) and the 
anterior cingulate cortex (ACC) mediate learning in response to acute stress and volatility 
as well as how the dorsal raphe nucleus – serotonin (DRN-5-HT) system together with 
the ventromedial prefrontal cortex (vmPFC) mediate stress reactivity based on perceived 
stressor controllability. We validate the model by simulating performance in an Avoid/
Escape Go/No-Go task replicating recent behavioral findings. This serves as a proof of 
concept and provides a computational hypothesis space that can be tested empirically 
and be used to distinguish planful versus impulsive STB subtypes. We discuss the relevance 
of the proposed model for treatment response prediction, including pharmacotherapy 
and psychotherapy, as well as sex differences as it relates to stress reactivity and suicide 
risk.
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1 INTRODUCTION
Suicide is the second leading cause of death among young adults and among the top ten causes 
of death across all ages worldwide (Naghavi et al., 2017). Despite decades of research seeking to 
identify risk factors of suicidal thoughts and behaviors (STB), their predictive ability remains limited 
(Large et al., 2016; Franklin et al., 2017). Some of the main risk factors include the following: prior 
psychiatric diagnosis, treatment history, family history of psychopathology, prior self-injurious 
thoughts and behaviors, substance use and psychosocial stress. However, multivariate suicide 
risk models based on these factors do not have sufficient sensitivity and specificity in predicting 
suicide and, even more importantly, lack mechanistic insight to offer clinically useful guidance 
on selecting optimal individualized interventions (Kessler et al., 2020). As a result, current clinical 
practice is in need of objective and reliable measures of suicide risk to not have to rely on self-
reports, with ∼50% of adults not disclosing their suicidal thoughts and remaining invisible for 
suicide prevention efforts (Mérelle et al., 2018).

In recent years, cognitive theories have proposed several explanations for the progression from 
emotional distress to suicidal ideation, and to suicide attempts (Van Orden et al., 2010; Klonsky 
and May, 2015; O’Connor and Kirtley, 2018; Bryan et al., 2020). At the core of these proposals 
is the recognition that suicide can be viewed as a means to escape mental pain (psychache) 
(Baumeister, 1990; Verrocchio et al., 2016). While mental pain and hopelessness contribute to 
suicidal ideation, other factors, collectively termed ‘acquired capability for suicide’ (e.g., increased 
physical pain tolerance, access to lethal means), mediate the transition from ideation to suicide 
attempt (for a review see Klonsky et al. (2018)). While providing useful high-level insights into 
the different psychological and environmental factors associated with suicidality, the verbal 
nature of these theories limits their predictive power (Millner et al., 2020; Meehl, 1990). Natural 
language is inherently vague resulting in intercorrelated constructs on which the theories rest, 
making it difficult to corroborate or refute them (Millner et al., 2020; Meehl, 1990). This calls for 
formal theories of suicidality which can be expressed computationally and which can define these 
constructs operationally (Millner et al., 2020; Dombrovski and Hallquist, 2021). Computational 
models could allow for a quantification of suicide risk and offer a more mechanistic insight for 
developing personalized clinical interventions (Nair et al., 2020; Millner et al., 2020). Just as 
importantly, computational models can help bridge different levels of analysis and establish 
mechanistic links between behavioral, cognitive, neural and even genetic variables, offering a 
more integrated understanding of the factors underlying vulnerability to STB (Huys et al., 2021).

One principled way of building such models is to investigate vulnerability to STB through the lens of 
normative theories of learning and decision making in computational neuroscience (Dombrovski 
and Hallquist, 2021, 2017). Collectively, STB has been associated with deficits in cognitive control 
(Richard-Devantoy et al., 2014) and impaired probabilistic learning in the context of rewards and 
punishments, including impaired delay discounting (Bridge et al., 2015), impaired reversal learning 
(Dombrovski et al., 2010) and impaired value comparison during the choice process (Dombrovski 
et al., 2019); for recent reviews see Lalovic et al. (2022) and Sastre-Buades et al. (2021). Outside 
of the laboratory, this is corroborated by findings of heightened suicide risk in gambling disorders 
(Karlsson and Håkansson, 2018; Jolly et al., 2021). Behavioral insensitivity to adverse consequences 
and heightened sensitivity to internal emotional states have also been linked to suicide attempts 
(Szanto et al., 2014). Together, these findings have led to a proposal of increased Pavlovian over 
instrumental control as being an important contributing factor to vulnerability to STB (Dombrovski 
and Hallquist, 2017, 2021). The Pavlovian controller rigidly specifies stimulus-response mappings 
regardless of outcomes, such as actively escaping proximal threats and avoiding distal threats, 
resulting in a rather reflexive behavior. In contrast, the instrumental control specifies stimulus-
action-outcome mappings enabling one to adapt behaviors to environmental contingencies and 
maximize desired outcomes, which can be thought of as goal-directed behavior. In line with 
the idea of increased Pavlovian biases, a recent study by Millner et al. (2019), found STB to be 
associated with an increased active-escape bias in an Avoid/Escape Go/No-Go task with aversive 
sound stimuli. In this study, the STB group was more biased towards choosing an active (Go) 
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response in the presence of an aversive sound (in Escape condition), even when withholding the 
response (in No-Go condition) was the correct response.

Here, we aim to extend these ideas by proposing a computational mechanism for how the increased 
Pavlovian biases in STB could result from impaired probabilistic learning (Figure 1a). Importantly, 
we show how this is mediated by hopelessness (a belief that there is nothing one can do to make 
things better), which is one of the most robust factors of suicide risk (Isometsä, 2014; May et al., 
2020). To this end, we apply active inference as the most general neurocomputationally-principled 
framework that integrates perception, action and learning into a continuous loop of information 
processing (Friston et al., 2013). The principle guiding this information processing is maximization 
of (Bayesian) model evidence for one’s model of the world, which simultaneously reduces 
uncertainty about the world and achieves desired outcomes. We show that by operationalizing 
hopelessness as predominantly negative instrumental beliefs (i.e., with all available actions 
believed to have low probability of leading to the desired states), an increased Pavlovian control 
emerges as a straightforward consequence of the drive to maximize model evidence. We 
propose four different perturbations that within the context of aversive learning could give rise to 
hopelessness itself: (1) an increased learning from aversive outcomes, (2) a reduced belief decay 
in response to unexpected outcomes, (3) an increased stress sensitivity and (4) a reduced sense 
of stressor controllability.

Importantly, these proposals stem from the consideration of neurocircuits implicated in STB. 
Research on suicide neuromarkers point to the circuits underlying stress response, implicating 
the locus coeruleus – norepinephrine (LC-NE) and the dorsal raphe nucleus – serotonin (DRN-5-
HT) systems (Mann and Rizk, 2020; Oquendo et al., 2014; van Heeringen and Mann, 2014). More 
broadly, neuroimaging findings are converging on fronto-limbic regions involved in emotion 
regulation and cognitive control, including the amygdala (Amy), the anterior cingulate cortex 
(ACC), the dorsal prefrontal cortex (dPFC) and the ventromedial prefrontal cortex (vmPFC) among 
other regions (Schmaal et al., 2020; Balcioglu and Kose, 2018). However, computational models 
linking these neuromarkers with the behavioral markers are still missing. Here we suggest that our 
proposed computational perturbations in STB could be related to how the LC-NE together with 
the Amy, the dPFC and the ACC mediate learning in response to acute stress and volatility as well 
as how the DRN-5-HT together with the vmPFC regulate stress responses based on the perceived 
controllability of the aversive stimulus (Figure 1b).

To validate our model, we run model simulations in a probabilistic Avoid/Escape Go/No-Go task, 
demonstrating how the proposed perturbations lead to hopelessness, increased Pavlovian control 
and increased active-escape bias – replicating recent empirical findings by Millner et al. (2019). 
This serves as a proof of concept and produces a computational hypothesis space which can be 
investigated experimentally and which might speak to different subtypes of suicidal behaviour: 

Figure 1 Hypotheses. (a) A 
computational cycle of active 
inference (black) and potential 
perturbations at different 
stages in the cycle (red). These 
perturbations can give rise to 
hopelessness – a belief that 
any taken action will lead to 
undesired states – and an 
increased influence of Pavlovian 
relative to instrumental 
modes of behavior (teal), 
both of which are associated 
with suicidality. (b) The brain 
network that we hypothesize 
to support the proposed 
perturbations: norepinephrine 
modulates belief updates (blue) 
while serotonin is involved 
in mediating the effects of 
stressor controllability (pink). 
Acute stress leads to increases 
in the learning rate, which 
is associated with Amy-LC 
connectivity (Uematsu et 
al., 2017; Jacobs et al., 2020), 
whereas environmental 
volatility – here assuming 
state-action prediction 
errors (SAPEs) as a proxy for 
environmental change – drives 
decay of previously learned 
associations and is mediated 
by dPFC-LC connectivity (Sales 
et al., 2019; Clewett et al., 
2014). LC projections to the 
ACC mediate action-dependent 
state transition belief updates 
(Tervo et al., 2014; Sales et al., 
2019), which are encoded in the 
ACC (Akam et al., 2021; Holroyd 
and Yeung, 2012). Finally, 
controllability of aversive 
outcomes, which depends on 
the inferred probabilities of 
achieving the desired outcomes, 
reduces aversiveness by 
inhibiting amygdala activation 
via the vmPFC-DRN-Amy circuit 
(Maier and Seligman, 2016; Kerr 
et al., 2012).
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impulsive versus planful attempts (Schmaal et al., 2020; Dombrovski and Hallquist, 2017; Bernanke 
et al., 2017).

2 MATERIALS AND METHODS
2.1 MODELLING RATIONALE
2.1.1 Behavioral control

Within the active inference framework, Pavlovian and instrumental modes of behavior can be 
derived from the same central computational goal, which could be thought of as maximizing 
model evidence, resisting entropy or maintaining homeostasis (Pezzulo et al., 2015). Being nested 
hierarchically – from reflexive to Pavlovian, to habitual, to instrumental behaviors – different modes 
of behavior allow for the successful navigation of increasingly more complex environments, but 
also require more computational and metabolic resources. This poses a problem of bounded 
rationality (i.e. finding a balance between behavioral accuracy and metabolic costs), which can 
be resolved by performing Bayesian model averaging (BMA) over the different modes of behavior 
(FitzGerald et al., 2014). This means that actions are informed by all modes of behavior, whereby 
the modes with the highest model evidence have the most influence. In these computational 
terms, a stronger active-escape bias in suicidality can be understood as resulting from a reduced 
model evidence for instrumental relative to Pavlovian control.

In active inference, the model evidence of different policies (e.g., Pavlovian vs. instrumental) 
depends on how well they are expected to result in desired outcomes (Friston et al., 2016). 
Thus, saying that instrumental control has a reduced model evidence is the same as saying that 
instrumental control is expected to have a reduced probability of fulfilling desired outcomes – i.e., 
beliefs are more ‘negative’, not mathematically (not below zero), but colloquially speaking. Here 
we operationalize hopelessness, which is one of the most robust suicide risk factors (May et al., 
2020; Isometsä, 2014), as strong negative instrumental beliefs about state transitions.

2.1.2 Learning: uncertainty, stress and norepinephrine

To understand how hopelessness arises, we have to consider the dynamics of belief updating, i.e. 
learning. Having predominantly negative beliefs (hopelessness) implies either a predominantly 
aversive environment or preferential learning from aversive events. Asymmetries in how positive 
and negative outcomes drive learning (i.e. affective bias) have been implicated in mood disorders 
(Pulcu and Browning, 2017; Clark et al., 2018; Pulcu and Browning, 2019), with negative outcomes 
having larger effect on learning than positive outcomes (Mathews and MacLeod, 2005; Eshel and 
Roiser, 2010). Conversely, in the general population learning is driven more strongly by positive 
outcomes (Sharot and Garrett, 2016). In STB, research on learning from negative vs. positive 
outcomes is scarce, but a recent study showed STB to be associated with faster processing of 
negative stimuli (Harfmann et al., 2019).

While the learning rate can be affected by multiple neuromodulatory systems, when it comes 
to adjusting the learning rate in response to acute stress and volatility, the LC-NE system plays a 
central role (Pulcu and Browning, 2019; Cook et al., 2019; Silvetti et al., 2018; Jepma et al., 2016; 
Lawson et al., 2020). Previous influential theories of LC function were founded on the assumption 
that LC-NE cells behave homogeneously (Yu and Dayan, 2005; Bouret and Sara, 2005). However, 
recent research emphasizes that LC firing properties are not topographically homogeneous and 
rather that the LC is comprised of largely non-overlapping target-specific subpopulations of 
neurons (Poe et al., 2020; Chandler et al., 2019). Importantly, aversive learning is mediated by 
Amy-LC connectivity (Sterpenich et al., 2006; Uematsu et al., 2017; Jacobs et al., 2020), whereas 
connectivity between the prefrontal cortex (PFC) regions and the LC has been found to represent 
‘unlearning’, which is necessary for faster adaptation to environmental change or volatility 
(Uematsu et al., 2017; Sales et al., 2019). Relevant for our aims here, dPFC-LC connectivity has 
been shown to encode learning from unpredictable feedback (Clewett et al., 2014) and response 
conflict resolution (Köhler et al., 2016; Grueschow et al., 2020). The dorsolateral PFC (dlPFC) itself 
has been associated with state prediction error (as opposed to reward prediction error) (Gläscher 
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et al., 2010). LC projections to the ACC have been shown to mediate updates of action-dependent 
beliefs about the environment (Tervo et al., 2014; Sales et al., 2019), with the ACC encoding such 
beliefs (Akam et al., 2021; Holroyd and Yeung, 2012). This is consistent with the findings that 
ACC activity correlates with reward expectation, prediction errors, learning rate and volatility 
(Rushworth and Behrens, 2008), with these learning variables engaging the ACC primarily in the 
context of learning about the value of instrumental actions (Matsumoto et al., 2007).

Several lines of evidence suggest the aforementioned networks to be implicated in suicidality 
(Schmaal et al., 2020; Oquendo et al., 2014). Studies have reported fewer LC neurons, LC 
overactivity and depletion of NE, all of which are thought to be associated with a dysregulated 
stress response (Oquendo et al., 2014; van Heeringen and Mann, 2014). The Amy is reported to 
show increased resting state functional connectivity (Kang et al., 2017) with some structural MRI 
studies also reporting larger Amy volumes (Monkul et al., 2007; Spoletini et al., 2011). Studies on 
the dPFC report reduced volumes (Ding et al., 2015), decreased resting regional cerebral blood 
flow (rCBF) (Willeumier et al., 2011) and reduced activation during error processing (Vanyukov 
et al., 2016). ACC volumes are also reported to be reduced, with reductions in rostral ACC (rACC) 
being most significant (Wagner et al., 2011). In a risk aversion task, suicide attempters showed a 
blunted subgenual ACC activation in response to potential gains (Baek et al., 2017), a reduced ACC 
response to sad faces and an increased response to wins versus loses (Olié et al., 2015). Finally, 
a recent study found greater rACC-Amy functional connectivity to be associated with suicidal 
ideation and previous suicide attempts (Alarcón et al., 2019).

Here, we propose that a disruption in any part of the Amy-dPFC-LC-ACC network (Figure 1b, blue) 
could lead to hopelessness, increased Pavlovian and active-escape bias, increasing the risk of STB. 
Specifically, we consider two possible perturbations. First, an increased Amy response to negative 
outcomes would increase learning from negative outcomes (i.e., negative affective bias), which 
may lead to more negative beliefs (hopelessness) and thus stronger Pavlovian influences. This is 
supported by increased learning rate in STB observed in an aversive learning task (Millner et al., 
2019). Second, reduced activity in the dPFC in response to state-action prediction errors would 
result in less belief decay allowing negative experiences to accumulate, thus also resulting in 
hopelessness and stronger Pavlovian biases. Interestingly, impairments in the dPFC have been 
mostly associated with planful suicides (Schmaal et al., 2020), which would be in agreement with 
the cognitive rigidity induced by reduced belief decay that we consider here.

2.1.3 Controllability: stress and serotonin

Recent work has shown that controllability of action outcomes governs arbitration between 
Pavlovian and instrumental control in line with BMA (Dorfman and Gershman, 2019). These effects 
were found to be associated with frontal midline theta power, which suggests involvement of 
the mPFC and the ACC (Csifcsák et al., 2020). Furthermore, it has been proposed that dorsal ACC 
(dACC) could be understood as encoding the expected value of control (Shenhav et al., 2013). This 
is very similar to what we have proposed in relation to hopelessness. Indeed, controllability and 
hopelessness are very closely related constructs. Uncontrollable aversive stimulation has been 
used to study learned helplessness, from which the construct of hopelessness has been derived 
(Liu et al., 2015). Another extensively studied effect of controllability is that of modulating the 
stress response. Stressor controllability has been associated with the vmPFC-DRN-Amy network, 
and thus with 5-HT-modulated stress response (Maier and Seligman, 2016; Kerr et al., 2012; 
Hiser and Koenigs, 2018). More specifically, stressor controllability activates the vmPFC, which 
then inhibits DRN, which in turn reduces amygdala activation in response to a stressor (Maier and 
Seligman, 2016). Relevant for our aims here, recent studies also show this effect to be associated 
with successful instrumental learning (Collins et al., 2014; Wanke and Schwabe, 2020).

Considering these findings, we introduce a computational distinction between hopelessness and 
controllability. As we have defined it earlier, hopelessness corresponds to negative instrumental 
state-action beliefs that are encoded in the ACC and are arrived at via LC-mediated updates. 
Controllability, on the other hand, we associate with the vmPFC-DRN-Amy network and thus 
with 5-HT-modulated stress response. Instrumental state-transition beliefs encoded in the ACC 
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underlie inference about future states and future outcomes, which are then used to estimate 
controllability in the vmPFC (see Model implementation section for more detailed rationale). This 
provides a computational link between the NE-modulated and the 5-HT-modulated variables and 
allows hopelessness and controllability to be distinct but coupled. Interestingly, projections from 
the LC to the DRN have also been shown to regulate 5-HT release (Pudovkina et al., 2003) and be 
necessary for developing learned helplessness following uncontrollable stressor exposure (Grahn 
et al., 2002), providing another point of interaction between the two neuromodulatory systems, 
which we do not specifically address here.

In suicidality, a large body of research points to deficits in the serotonergic system (van Heeringen 
and Mann, 2014; Oquendo et al., 2014). While lower 5-hydroxyindoleacetic acid (5-HIAA) levels – a 
major serotonin metabolite – in the cerebrospinal fluid (CSF) suggest reduced overall serotonergic 
activity (Mann et al., 2006), serotonin in the brainstem is found to be elevated (Bach et al., 2014), 
with serotonergic action being elevated in the DRN due to less reuptake (Arango et al., 2001). 
Furthermore, studies also report elevated serotonin binding in the Amy (Hrdina et al., 1993) and 
fewer serotonin transporters in the vmPFC and the ACC (Mann et al., 2000). A recent study has also 
found a history of suicide attempts to be associated with a diminished functional connectivity 
between vmPFC and Amy (Wang et al., 2020). Together, these findings are consistent with an 
increased 5-HT-mediated stress response in suicidality.

Here we propose that a reduced sense of controllability stemming from vmPFC-DRN-Amy network 
impairments (Figure 1b, pink) can lead to a stronger Amy activation in response to stress, thus 
increasing learning from negative outcomes and leading to hopelessness and stronger Pavlovian 
biases. Impairments in the vmPFC have been associated with impulsive suicide attempts (Schmaal 
et al., 2020), which would be in line with larger belief updates in response to stressors.

2.2 MODEL IMPLEMENTATION

In the previous sections we have laid out a conceptual picture of our proposed model by considering 
various computational and neurobiological findings. In this section, we will present one possible 
computational implementation by focusing on an Avoid/Escape Go/No-Go task (Figure 2a). Note 
that the implementation of the model is not at the level of neural dynamics but rather at the 
higher level of computational mechanisms underwritten by such dynamics (cf. Marr’s levels of 
analysis (Marr and Poggio, 1976)). However, the active inference framework has deep connections 
to neurobiology and has recently been applied to understanding a whole range of psychiatric 
conditions (Smith et al., 2021), including the effects of noradrenergic and serotonergic drugs in 
depression (Constant et al., 2021).

The task employs a 2 × 2 (Go/No-go x Avoid/Escape) factorial design. On every trial, the agent is 
presented with one of four cues. Two of the cues are always paired with an aversive sound (Escape 
condition) while the other two are paired with silence (Avoid condition). The agent’s goal is to 
learn, for each cue, which response (active Go or passive No-go) more frequently results in silence 
during feedback. For ease of reference, we will refer to the responses that maximize the frequency 
of silence during the feedback as the “correct” responses throughout the paper. This means that 
in the Avoid condition, correct responses will prevent the aversive sound from playing, while in the 
the Escape condition, correct responses will stop the aversive sound that is already being played. 
However, the feedback is probabilistic, which means that even “correct” responses will sometimes 
lead to experiencing the aversive sound. Probabilistic feedback introduces uncertainty and makes 
it more challenging to learn, which response is correct.

To model this task, we use an active inference scheme for discrete Markovian models (Friston et al., 
2016), which means that we will be dealing with discrete time steps (t), states (s), actions (a), and 
observations (o). Each trial gets divided into three time steps. At t = 1, the agent is in one of four 
possible hidden states with no informative observations about the task conditions available (e.g., a 
fixation cross is displayed, which does not contain any information on which cue will be presented 
next). At t = 2, the agent is presented with one of the four cues, which correspond to one of the 
four conditions resulting from the 2 × 2 (Go/No-Go × Avoid/Escape) factorial design. In the Avoid 
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condition, there is no aversive sound while the agent is choosing either a Go or No-Go response. 
In the Escape condition, the aversive sound is present throughout the decision phase. At t = 3, the 
agent observes the final outcome of a trial, either aversive or neutral. This means that in the Avoid 
condition, a correct action leads to no aversive sound, while in the Escape condition, a correct 
action results in the discontinuation of the aversive sound. When choosing an action at t = 2, the 
agent relies on available policies π: instrumental Go/No-Go and Pavlovian. Probabilities of these 
policies depend on the underlying beliefs about likelihood of observations, A, state transitions – 
B{Go}, B{No-Go}, B0 – as well as prior beliefs over outcomes (i.e., preferences), C. In other words, 
probabilities of policies depend on model evidence that each set of beliefs provides, where model 
evidence is approximated with variational free energy (see S1 Appendix: full mathematical 
details of the model and Da Costa et al. (2020) for more details).

Figure 2 Avoid/Escape Go/No-Go task design and model specification. (a) Following Millner et al. (2018; 
2019) the task has 4 cues corresponding to the 2 × 2 (Go/No-Go x Avoid/Escape) factorial task structure, with 
2 possible outcomes: aversive or neutral. For modelling purposes, the task was divided into 3 discrete time 
points. At the start of a trial (t = 1) the agent is in one of the four hidden states (s1–4) and no observations 
are available (o1). Next, the agent is taken to t = 2, where a cue (and in the case of Escape condition also 
an aversive sound) is presented corresponding to one of four possible hidden states (s5–8) and observations 
(o2–5). At t = 2 the agent chooses what action to take (Go or No-Go) which then leads to one of four possible 
states (s9–12) and observations (o6–9): Go response + silence (s9, o6), Go response + aversive sound (s10, o7), 
No-Go response + silence (s11, o8), No-Go response + aversive sound (s12, o9). (b) The main model structures. 
The likelihood of observations, A, was implemented to have deterministic mappings between states and 
observations due to the salience of the aversive stimulus and the cues. As no learning was required, A in 
the generative model and in the generative process were identical. State transitions from t = 2 to t = 3 
for instrumental (Go/No-Go) policies B were probabilistic, captured by the y parameter. For the objective 
transition probabilities y was set to 0.8, meaning that correct response by the agent led to the neutral state 
80% of the time. For the generative model, y was initialized with 0.5 to correspond to the agent having a 
uniform prior over the two possible transitions. The zero probabilities for the other transitions reflect the 
assumption that the agent understands the task structure and does not expect to end up in a Go state after 
choosing No-Go and vice versa. State transition probabilities from t = 2 to t = 3 for the Pavlovian policy, B0, 
were implemented to allow only for No-Go responses in the Avoid and Go responses in the Escape conditions 
(with Go responses in the Avoid and No-Go responses in the Escape conditions having 0 probabilities). The 
strength of the belief that the Pavlovian policy will lead to the desired states is captured by the z parameter. 
Prior over outcomes (C) assumed that the agent does not like outcomes 4, 5, 7 and 9 (all of which involve 
the aversive stimulus). The strength of this preference of neutral outcomes is captured by parameter c. The 
prior over initial states D was assumed to be uniform for states 1–4. The other states have zero probability, 
which reflects the assumption that the agent understands the task structure and does not expect to be in 
states 5–12 at the beginning of a trial. Finally, prior over policies E was also assumed to be uniform across 
the available Go, No-Go and Pavlovian policies (π). See S1 Appendix: full mathematical details of the model 
for more implementation details.
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After each trial, the agent updates their beliefs depending on the outcome in that trial. Since there 
is no ambiguity about observations due to their saliency, we assume all learning to concern only 
state transition probabilities (B). Columns in B matrices are Dirichlet distributions parameterized 
with concentration parameters b, such that for a control state u, B(u) = Dir(b(u)). Concentration 
parameters can be interpreted as the number of times various combinations of state transitions 
have been observed, which effectively captures both the probability and the confidence in that 
probability. At the end of each trial, state transition concentration parameters are updated via:
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where i denotes the trial number, u denotes the control state (Go or No-Go) and pst  contains 
posterior probabilities of different states under each policy p for time point τ. Note that in the 
current implementation, we only care about τ = 3, because the transition between t = 1 and t = 2 
does not depend on the agent’s choices. π denotes posterior policy probabilities.

The sum in the second term of the equation is performed only over the two instrumental policies. 
This means that in an extreme case where behavior is driven primarily by the Pavlovian policy and 
the probabilities of instrumental policies are very low, there will be very little learning even though 
the agent has the information to update their beliefs about state transitions. To account for 
instrumental learning facilitated by Pavlovian responses (Holmes et al., 2010), one could consider 
combining the posterior probabilities of Pavlovian Go or No-Go responses with instrumental Go and 
No-Go policy probabilities, respectively, when updating beliefs about controlled state transitions. 
However, in the simulations presented in this paper, Pavlovian effects are never too extreme and 
similar results can be obtained with either implementation. To keep the model simpler, here we 
present the results using the original implementation where the sum in the second term of the 
equation is performed only over the two instrumental policies.

The remaining two parameters η and λ in Eq. (1) control the learning rate and the decay rate, 
respectively. The learning rate controls how much new experiences add to the existing concentration 
parameters, while the decay rate controls how much the previously accumulated concentration 
parameters should be discounted. Without the decay factor, concentration parameters would 
accumulate indefinitely making the agent too rigid and thus too slow to adapt if environmental 
contingencies were to change. Following the work of Sales et al. (2019), λ is assumed to depend 
on state-action prediction errors (SAPEs) and to be associated with effective connectivity from 
the dPFC to the LC. This makes the decay factor sensitive to environmental volatility: changing 
environmental contingencies will result in larger SAPEs, which in turn will speed up unlearning of no 
longer accurate beliefs, allowing the agent to learn the new contingencies faster. The relationship 
between SAPEs and λ is modelled using a logistic function:

 ( ) ,
1

max min
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l l
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where g is the gradient, m is the midpoint, while λmin and λmax are minimum and maximum function 
values. Note that higher SAPEs will result in a smaller λ, which will result in more belief decay 
because λ is a denominator in the update equation Eq. (1). SAPE itself is defined as Kullback-Leibler 
(KL) divergence between BMA distributions at successive time steps:

 ( ) [( )|| )] .KLSAPE t D= –1t tS St t  (3)

In the simulations presented in this paper, SAPE is computed for t = 3, after the action (Go/No-Go) is 
performed and only for predictions about the final states (τ = 3). BMAs themselves are computed via:

 
,

p
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where p
tp  denotes posterior policy probabilities and pst  denotes posterior state probabilities for 

policy p at time point τ.
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In addition to being sensitive to environmental change (i.e. volatility), the LC-NE system also 
coordinates aversive learning mediated by Amy-LC connectivity (Uematsu et al., 2017; Jacobs et 
al., 2020). To capture these effects, we introduce a learning rate dependency on outcome valence 
(assuming Amy activation during aversive outcomes), which we associate with the preference 
against aversive outcomes encoded in the C vector:

 1 | ( )| ,k oh= + C  (5)

where C(o) is the value of prior preference for outcome o, with the parameterization being -c for the 
aversive stimulus outcomes and 0 for the neutral outcomes. Parameter k is a scaling factor that 
could correspond to effective connectivity between the Amy and the LC. Note that the learning 
rate dependence on valence that we introduce here is what enables the model to account for 
affective biases (Pulcu and Browning, 2017; 2019; Sharot and Garrett, 2016; Eshel and Roiser, 
2010). A more principled implementation of valence and its role in modulating the learning rate 
could depend on the rate of change of free energy over time (Joffily and Coricelli, 2013).

The final component of the model aims to account for how controllability of aversive outcomes 
inhibits Amy activation via the serotonergic system involving vmPFC-DRN-Amy network (Maier and 
Seligman, 2016; Kerr et al., 2012). We implement this by modulating stress sensitivity parameter 
c by a controllability parameter w:

 
(1 )wc c -¢ =  (6)

In the limiting cases when there is no control (w = 0), c′ is equal to the original c and when there 
is complete control (w = 1) c′ is equal to 1. Controllability itself is assumed to depend on on beliefs 
that the neutral outcome can be reached:
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where 2
3

t
t
=
=o  contains expected outcomes at time point τ = 3 at time t = 2; and here we are summing 

over the two possible neutral outcomes (o6 and o8) for time point τ = 3. Expected outcomes are 
simply a product of the likelihood of observations A and BMA expected states Sτ. This means that 
the subjective estimate of controllability depends on inferred and expected states, and not on 
actual states of the world. Parameter wn effectively represents an average probability of achieving 
the desired outcome in the inferred context. Note that this is similar to the well-established finding 
of vmPFC encoding expected value (see Hiser and Koenigs (2018) for a review). Furthermore, 
such distinction between vmPFC, which encodes expected outcome (which we associate 
with controllability), and ACC, which encodes state-transition probabilities (which we relate to 
hopelessness) is consistent with the finding that vmPFC encodes stimulus-based value and is 
more active during the outcome phase (cf. stress response) and that ACC encodes action-based 
value and is more active during both outcome and decision phases (cf. instrumental control and 
learning) (Vassena et al., 2014). The close relationship between the subjective feeling of control 
and outcome valuation has also been demonstrated in recent studies (Stolz et al., 2020; Wang 
and Delgado, 2019). Relevantly, STB has been associated with reduced activation to expected 
value in vmPFC (Brown et al., 2020; Dombrovski and Hallquist, 2017).

Finally, to collectively account for any impairments of how wn modulates the stress response (i.e., 
any impairments along the vmPFC-DRN-Amy network), we transform wn into the final estimate of 
controllability by entering it into a logistic function constrained by a controllability threshold w0 (i.e. 
the midpoint of the logistic function) and a gradient gw:

 0( )

1
.

1 w ng w ww
e - -=

+  (8)

The dependency of the learning rate on stress sensitivity (c), means that controllability can indirectly 
regulate learning rate through its effects on stress sensitivity. This is in line with recent findings 
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showing that DRN serotonin neurons modulate the learning rate and they do so in proportion to 
uncertainty about decision outcomes (Grossman et al., 2021), which is also in agreement with 
how we implemented controllability (Eq. (7)).

Note that even though we have provided a reasonable theoretical justification for introducing the 
controllability component, it is a rather ad hoc addition to the otherwise computationally principled 
active inference framework. It is important to stress, however, that the simulation results that we 
present in the next section do not hinge on this additional computation, except for the results 
concerning the controllability parameter itself.

Figure 3 summarizes the proposed computations as well as their possible neural correlates and 
highlights parameters of interest for STB.

3 RESULTS
3.1 MODEL SIMULATIONS

To validate the model, we first simulated performance on the task for a single healthy control 
(Figure 4), and then showed how increasing parameter k – which regulates aversiveness-related 
component of the learning rate and is assumably represented in terms of Amy-LC connectivity – 
can produce increased active-escape biases and other behavioral and cognitive aspects associated 
with suicidality (Figure 5). Finally, we defined a wider hypothesis space, exploring how different 
parameters in the model can independently lead to the behavior observed in STB. (Figure 6).

For the initial simulations (Figures 4 and 5 ), we ran 200 trials of the task, where at every trial one of 
the 4 cues was presented at random. After 100 trials, the meanings of the cues were reversed: Go 
becoming No-Go and vice versa. In this simulation, the model parameters were set to k = 0.1, m 
= 1.3, c = 8, w0 = 0.5, z = 0.4, λmin = 2, λmax = 50, α = 3 and β = 1 to produce reasonable performance 
trajectories as well as an active-escape bias (Figure 4a) consistent with empirical findings reported 
by Millner et al. (2018). As the agent’s beliefs approach the actual state transition probabilities 
(Figure 4f-i, colored lines), this makes the neutral outcomes more expected, thus invoking only small 
SAPEs in contrast to unexpected aversive outcomes (Figure 4d). This is also what drives successful 
unlearning after the reversal: a series of negative outcomes with large SAPEs result in a sharp drop 
in the decay parameter (Figure 4e, black line), which increases belief decay and facilitates quick 
learning of new contingencies. The Pavlovian policy that underlies the active-escape bias can be 
seen at its strongest at the very beginning of the task and right after the reversal, when beliefs that 
instrumental actions will lead to neutral outcomes are lower (Figure 4f-i).

Figure 3 Summary of the 
proposed computations, 
possible neural correlates 
and parameters of interest 
for STB. Within the proposed 
model there are four areas 
of relevance for STB: learning 
rate, belief decay rate, stress 
reactivity and perceived 
controllability of a stressor. 
Stress weight parameter, 
k, controls the boost in the 
learning rate in response 
to stress. Increasing this 
parameter would result in 
increased learning from 
stressful outcomes. Stress 
sensitivity parameter, c, 
captures individual sensitivity 
to stress, which then also 
affects the learning rate. 
Controllability threshold, w0, 
is a midpoint in the logistic 
function that translates the 
beliefs about state transitions 
into an estimate of stressor 
controllability. In other words, 
w0 regulates how positive state 
transition beliefs have to be 
for a stressor to be deemed 
sufficiently controllable. Finally, 
belief decay threshold, m, 
regulates how large state-
action prediction errors (SAPEs) 
have to be before significant 
belief decay takes place. Note 
that for the decay rate and the 
controllability there are other 
parameters (gradients, gw, g, 
and minimum and maximum 
decay values λmin, λmax) that 
we could inspect, but for 
simplicity here we focus on 
the midpoint values w0 and m 
as the exact parameterization 
of these effects is somewhat 
arbitrary and the midpoints 
are sufficient for exploring the 
general direction of different 
manipulations.
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Figure 4 Model simulations: a single (healthy control) participant with low stress weight (k = 0.1). (a-c) 
average choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-
Go-to-Avoid (NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues 
used in the task. The results in (a) reproduce active-escape bias reported by Millner et al. (2018) in the 
general population. (b) and (c) are additional predictions about performance after reversal and overall, 
respectively. (d) Decay parameter values for different SAPEs throughout the task. Note that SAPEs for 
aversive outcomes are larger which leads to smaller decay parameter, and thus to larger belief decay 
(see Eq. (1)). (e) Performance across all trials. The top 3-row panel shows the sequence of cue presentation 
(middle row), executed action (non-grey squares: bottom row – No-Go, top row – Go) and trial outcome 
(white – neutral, black – aversive); each column corresponds to a single trial. Actions are represented 
implicitly by either black or white color. If for a given trial the top square is either black or white, it means 
that the Go action was selected, if the bottom square is either black or white then the No-Go action was 
selected. The main panel shows trajectories of correct action probabilities, which gradually increase as the 
task progresses, but drop sharply once the Go/No-Go cue meanings are reversed on trial 100. The response 
to this environmental change can be seen in the decreased decay parameter (black line), which drives faster 
forgetting of previously learned contingencies and allows the agent to adapt. Note that decay parameter 
trajectory here is scaled to be between 0 and 1 and smoothed out using moving average with a window size 
of 5 trials. (f-i) Trajectories of underlying beliefs about state transitions and policy probabilities. These plots 
reflect the straightforward relationship between belief strength and policy probability: as the probability of 
an instrumental Go/No-Go action leading to the desired state increases (solid/dash-dotted colored lines) 
the probability of choosing Go/No-Go policy tracks that increase (solid/dash-dotted gray), and probabilities 
of Pavlovian policies (solid black) decrease as a result. The vertical dashed lines in all of the plots denote the 
reversal.

By increasing parameter k to 1, the size of the belief update after experiencing aversive outcomes 
becomes larger, reproducing the increased active-escape bias (Figure 5a) by a similar magnitude 
as reported in individuals with STB (Millner et al., 2019). The increase in the active-escape bias is 
a direct consequence of the increased influence of the Pavlovian policy (Figure 5f-i, black line), 
which in turn is a consequence of weaker beliefs that either of the instrumental Go/No-Go actions 
will lead to the desired neutral outcome (cf. hopelessness) (Figure 5f-i, colored lines). The latter 
is a direct consequence of increased k, leading to an over-adjustment of beliefs after aversive 
outcomes. This also disrupts the agent’s ability to adapt to a changing environment because 
negative outcomes after the reversal become less surprising: this is reflected in reduced SAPEs 
for aversive outcomes and increased SAPEs for neutral outcomes (Figure 5d). Assuming SAPEs are 
computed in dPFC (Sales et al., 2019; Gläscher et al., 2010), this result would be consistent with 
empirical findings of increased dPFC response to wins vs. loses in suicide attempters (Olié et al., 
2015) and reduced dlPFC activation in response to negative stimuli in suicidal ideation (Miller et 
al., 2018).
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Figure 5 Model simulations: a single (STB) participant with a high stress weight (k = 1). (a-c) average 
choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-Go-to-Avoid 
(NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues used in the task. 
The results in (a) reproduce increased active-escape bias in suicidality reported by Millner et al. (2019), and 
predict that this bias would be even larger after a reversal in cue meanings (b panel). (d) Decay parameter 
values for different SAPEs throughout the task. Note that now aversive outcomes produce smaller SAPEs, due 
to increased expectation of aversive states. (e) Performance across all trials. The top 3-row panel shows the 
sequence of cue presentation (middle row), executed action (non-grey squares: bottom row – No-Go, top 
row – Go) and trial outcome (white – neutral, black – aversive); each column corresponds to a single trial. 
Actions are represented implicitly by either black or white color. If for a given trial the top square is either 
black or white, it means that the Go action was selected, if the bottom square is either black or white then 
the No-Go action was selected. The main panel shows trajectories of correct action probabilities. Compared 
to the healthy control in the previous figure, the trajectories are noisier, especially after the reversal on trial 
100. Decay rate trajectory (black line) is also nosier, which is partly responsible for the poor adaptation after 
the reversal. Note that decay parameter trajectory here is scaled to be between 0 and 1 and smoothed 
out using moving average with a window size of 5 trials. (f-i) Trajectories of underlying beliefs about state 
transitions and policy probabilities. Compared to the healthy control, the belief trajectories are noisier, but 
even more importantly, beliefs about the instrumental transitions to neutral states are on average weaker (cf. 
hopelessness), which leads to increased probability of the Pavlovian policy. The vertical dashed lines in all of 
the plots denote the reversal.

3.2 MULTIPLE ROUTES TO AN ACTIVE-ESCAPE BIAS

While directly increasing learning from aversive outcomes (k) is one way to produce the effects 
associated with STB, there is a wider hypothesis space to be explored. To that end, we performed 
a more extensive investigation of the effects of other model parameters. In this context, it is 
important to note that the model exhibits a considerable degree of stochasticity when initiated 
with the chosen parameter configurations and thus, the results presented earlier in Figures 4 and 5 
are meant to be primarily illustrative. To reduce stochasticity and to obtain more robust behavioral 
results, now we used 400 trials with a reversal at 200 and ran 50 simulations for each parameter 
configuration. To visualize the results, we computed relevant task performance summary statistics 
(mean and standard error) for each parameter configuration (Figure 6). The first column in Figure 

6 simply reproduces the results in Figures 4 and 5, showing that as we increase learning from 
negative outcomes, we reduce beliefs that instrumental actions will lead to the desired states 
(Figure 6a), which leads to an increase in the probability of the Pavlovian policy (Figure 6e), which in 
turn leads to a larger active-escape bias (Figure 6i). As a result of the increased biases, we also see 
a slight decrease in the overall performance accuracy (Figure 6m).

Reducing base belief decay (increasing parameter m) produces similar results of more negative 
beliefs, a higher probability of the Pavlovian policy and a stronger active-escape bias (Figure 6b,f,j). 
We also see a deterioration of the overall performance accuracy after the reversal, as the agent 
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is slow to adapt to new contingencies (Figure 6n). Although very little research exists on reversal 
learning in suicidality, the latter result is in line with impaired reversal learning demonstrated in 
a reward/punishment probabilistic learning task in suicide attempters (Dombrovski et al., 2010).

A higher stress sensitivity (larger c) also produces the effects associated with STB: more negative 
beliefs (Figure 6c) lead to a higher probability of the Pavlovian policy (Figure 6g) and a stronger 
active-escape bias (Figure 6k). Finally, the overall performance accuracy (Figure 6o) shows a non-
linear dependence on stress sensitivity, which is reminiscent of the inverted U-shaped relationship 
between stress and performance (Yerkes et al., 1908; Hebb, 1955). It is important to note that 
the c parameter features in the model twice: first, in the prior over outcomes, and second, in the 
learning rate after aversive outcomes. The decrease in the overall performance accuracy and the 
increase in the active-escape bias at very low values of c can be explained by the former role of 
this parameter. In other words, a small c means little motivation to prefer neutral outcomes (e.g., 
the aversive outcomes are not experienced as very aversive), which leads to a more random policy 
selection and thus effectively increases Pavlovian influences and reduces overall performance 
accuracy. In contrast, the increased active-escape bias associated with larger c values derives from 
parameter c‘s contribution to the learning rate. Interestingly, both reduced and increased distress 
tolerance have been associated with suicide risk: lower distress tolerance relates to psychological/
social pain and contributes to suicidal ideation, while higher distress tolerance relates to physical 
pain and contributes to the acquired capability for suicide (see Liu et al. (2016) for a discussion). 
Our model simulations are agnostic to the nature of the aversive stimulus used and thus might be 
capturing both of these effects.

Reducing perceived controllability (increasing w0) is yet another way to produce the effects 
associated with STB. By way of a self-fulfilling prophecy, a reduced controllability threshold leads 
to more negative beliefs (Figure 6d), which induces increases in the Pavlovian policy probability 
(Figure 6h) and an active-escape bias (Figure 6l), as well as a slight decrease in the overall 
performance accuracy (Figure 6p).

3.3 COMPUTATIONAL PARAMETERS REVEAL STB SUBTYPES

While all of the above parameter manipulations lead to similar mean behavioral effects, inspecting 
the time series reveals different dynamics of belief updating and policy probabilities (Figure 7). 
Using NGE/NE cue as an example, for high m values (low belief decay rate), we can see a very 

Figure 6 Model simulations: 
exploration of the hypothesis 
space. Each column shows 
the effects of varying on of the 
parameters: k – stress weight 
(while m = 1.3, c = 8, w0 = 0.6), 
m – belief decay threshold 
(while k = 0.7, c = 8, w0 = 0.6), 
c – stress sensitivity (while k = 
0.6 m = 1, w0 = 0.5) and w0 – 
controllability threshold (while 
k = 0.9, m = 1.3, c = 8). (a-d) 
the mean of beliefs that the 
neutral state will be reached 
averaged across 4 contexts and 
2 possible actions. (e-h) The 
mean probability of choosing 
the Pavlovian policy. (i-l) Active-
escape bias (the difference 
between choice accuracy on GE 
and NGE trials). The solid and 
dashed red lines denote the 
expected active-escape bias 
in healthy control group and 
suicidality group, respectively 
(based on Millner et al. (2018; 
2019) findings). (m-p) Mean 
choice accuracy across all 4 
contexts.
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gradual progression towards more negative beliefs and an increased influence of the Pavlovian 
policy (Figure 7a). For high w0 (low controllability), high k (high stress weight) and high c (high stress 
sensitivity), we see increasingly larger and sudden spikes in Pavlovian biases. Considering the 
influence of the Pavlovian policy as a proxy for STB risk, the former scenario suggests a constantly 
increasing risk of STB and thus could be related to planful suicide attempts, while the latter scenario 
suggests an increased STB risk immediately after the occurrence of aversive events and could relate 
to impulsive suicide attempts. Bearing in mind our proposed links between the model parameters 
and the underlying neurocircuitry (Figure 3), these results are consistent with planful and impulsive 
suicide attempt subtypes, with the former being predominantly associated with dPFC activity and 
the latter being predominantly associated with vmPFC activity (Schmaal et al., 2020).

4 DISCUSSION
In this paper, we presented a computational model of hopelessness and Pavlovian/active-escape 
bias in suicidality. With this model we showed that increased Pavlovian control and active-escape 
biases result from state hopelessness via the drive to maximize model evidence. Moreover, we 
proposed how hopelessness itself can arise from four mechanisms: (1) increased learning from 
aversive outcomes, (2) reduced belief decay in response to unexpected outcomes, (3) increased 
stress sensitivity and (4) reduced sense of stressor controllability. We also proposed how these 
alterations might relate to the neurocircuits implicated in suicidality. Specifically, we considered 
perturbations in the LC-NE system together with the Amy, the dPFC and the ACC, which mediate 
learning in response to acute stress and volatility, as well as perturbations in the DRN-5-HT system 
together with the vmPFC and the Amy, which regulate stress reactivity and its modulation by 
perceived controllability. We validated the model via simulations of an Avoid/Escape Go/No-Go task 
reproducing the active-escape biases reported by Millner and colleagues (Millner et al., 2019, 2018).

First, it is worthwhile to elaborate on what advantages and new insights our proposed model 
brings compared to previous modelling work. Millner et al. (2019) analyzed the increased active-
escape bias in STB using a combined reinforcement learning – drift diffusion model (RL-DDM) and 
found that an increased active-escape bias can be explained by a bias parameter (aka a starting 
point in the DDM part of the model). This parameter was assumed to be constant throughout the 
task. In contrast, our proposed model offers a mechanistic explanation for how active-escape bias 
arises dynamically from learning about the state transition probabilities and balancing between 
instrumental and Pavlovian policies. Unlike in RL-DDM, in our model, Pavlovian and instrumental 
policies are represented explicitly. Importantly, this allowed us to relate state transition probabilities 
to state hopelessness (which is a central construct in suicidality research (Klonsky et al., 2018; May 
et al., 2020; Isometsä, 2014)), offering a possible operationalization of the hopelessness construct. 
Finally, using the active inference framework enabled us to propose several links (some more 
speculative than others) between the model variables and the underlying neurocircuitry, which 
could help bridge the explanatory gap between neurobiology and cognition in STB (see Limitations 
section for further discussion).

Our model simulation results offer a computational hypothesis space by identifying mechanistically 
distinct perturbations that lead to hopelessness and Pavlovian/active-escape biases associated with 
STB. These distinct pathways might also speak to different suicidality subtypes: impulsive versus 
planful (Schmaal et al., 2020; Bernanke et al., 2017). While all of the four parameter manipulations 
produced increased Pavlovian control and active-escape biases, examining the trajectories of belief 
updating revealed that reduced belief decay led to more gradual updates and more stable negative 
beliefs as well as more stable and elevated Pavlovian influences, which could be associated with 

Figure 7 Model simulations: 
trajectories of beliefs and 
policies under different 
parameter manipulations. (a) 
low belief decay, m = 2, (b) low 
controllability, w0 = 0.8, (c) high 
stress weight, k = 1.1, (d) high 
stress sensitivity, c = 20. The 
other parameters were set to 
the same values as in Figure 
6. All panels show trajectories 
of NGE/NE cue: where the cue 
is NGE before the reversal (the 
vertical dashed line) and GE 
after the reversal. Less variable 
rigid negative beliefs and 
Pavlovian policy in (a) could be 
associated with planful suicide 
attempts, whereas more 
variable beliefs and sudden 
increases in Pavlovian policy 
in (b-d) could be associated 
with more impulsive suicide 
attempts (Schmaal et al., 2020; 
Bernanke et al., 2017).



48Karvelis and Diaconescu  
Computational Psychiatry  
DOI: 10.5334/cpsy.80

more planful STB. The other three manipulations – reduced controllability of stressors, increased 
learning from aversive outcomes and increased stress sensitivity – resulted in increasingly variable 
belief updates with sudden spikes in Pavlovian biases after aversive outcomes, which could be 
associated with more impulsive STB. Considering the dPFC and the vmPFC as possible correlates of 
belief decay and controllability (and its effects on stress reactivity), respectively, our results are in 
agreement with neuroimaging studies associating disruptions in vmPFC activity with the impulsive 
STB subtype and the dPFC activity with the planful STB subtype (Schmaal et al., 2020).

While throughout the paper we have adopted a transdiagnostic view of STB, many mental 
disorders are known to increase suicide risk. Among all disorders, borderline personality disorder 
(BPD), depression, bipolar disorder, schizophrenia, and anorexia nervosa show the highest risk 
of suicide – between 10 to 45 times higher than the general population (Chesney et al., 2014). 
Comorbidities further increase suicide risk by inflicting higher levels of distress (Nock et al., 2010; 
Jylhä et al., 2016), with the majority of suicides being estimated to occur within a major depressive 
episode (Isometsä, 2014). Recent studies show preliminary evidence that suicide subtypes might 
cut across the current categories of disorders, with higher suicidal ideation variability (i.e. higher 
stress responsiveness) being associated with childhood physical abuse, aggression, and impulsivity 
in major depressive disorder (Oquendo et al., 2020) and with affective lability in BDP (Rizk et al., 
2019). In a similar way, we might expect that the ways in which different mental disorders increase 
the risk of suicide could also map onto the different ways in which the effects associated with STB 
can emerge within our proposed model.

4.1 MODEL-BASED SUICIDALITY SUBTYPES AND PERSONALIZED 
INTERVENTIONS

Being able to stratify the propensity for suicidal behavior into mechanistically distinct subgroups could 
help improve early interventions and treatment response prediction. Many different psychotherapies 
are applied in the context of suicidality, including the manualized therapies such as CBT, Dialectical 
Behavior Therapy (DTB), and mentalization-based therapy (MTB). However, evidence for the 
effectiveness of different psychotherapies is still scarce and it remains unclear which components of 
the therapies are most effective in reducing suicidality (Briggs et al., 2019; Ougrin et al., 2015; Weinberg 
et al., 2010). Moreover, the attempts to determine these unknowns are likely complicated by not 
accounting for the etiological heterogeneity in high suicide risk groups (Iyengar et al., 2018). Current 
neurobiological models of the mechanism of action of psychotherapy point to neural substrates of 
executive and semantic processes and highlight the vmPFC and its involvement in implicit emotion 
regulation as well as dPFC and its involvement in explicit behavioral control (Messina et al., 2016). 
This would map to the stressor controllability (vmPFC) and belief decay (dPFC) components in our 
proposed model and would suggest these parameters to be relevant when assessing, monitoring or 
optimizing the effectiveness of psychotherapy for a given suicidality subtype. For example, we could 
think of the controllability parameter as reflecting the level of felt control over one’s inner and outer 
life whereas the belief decay parameter could capture one’s ability to unlearn maladaptive beliefs 
through new experiences, behavior or cognitive reappraisal (Zilverstand et al., 2017).

When it comes to pharmacotherapy, sub-anesthetic doses of ketamine, a N-methyl-D-aspartate 
receptor (NMDAR) antagonist, is currently one of the most promising interventions for rapid reduction 
of STB, but only 55–60% of individuals respond with a complete remission (Wilkinson et al., 2018). 
The exact mechanism through which ketamine achieves its anti-suicidal and anti-depressant 
effects is still not fully understood (Riggs and Gould, 2021). Many hypotheses emphasize the 
importance of increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) 
signalling, its involvement in bottom-up information transmission and a consequent increase in 
synaptic and spine plasticity (Zanos and Gould, 2018; Lengvenyte et al., 2019). Other recent in 
vivo microdialysis findings suggest ketamine-induced AMPAR signaling in LC and DRN as well as a 
subsequent release of NE and 5-HT in the mPFC to be necessary for the rapid antidepressant effects 
(López-Gil et al., 2019; Llamosas et al., 2019; Pham et al., 2017), also implicating prelimbic cortex 
(a homolog to Brodmann’s area 32 in the vmPFC) (PL)-DRN involvement in stressor controllability 
(Amat et al., 2016; Dolzani et al., 2018). A recent review also highlights the ACC to be playing a 
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key role in mediating ketamine’s antidepressant effects (Alexander et al., 2021). The model we 
introduced here could help provide a more mechanistic understanding of how the changes in belief 
updating and possibly activity in these brain regions relate to reduced suicide risk.

Personalization of early interventions could also be improved by a more mechanistic understanding 
of sex differences as it relates to STB (Williams and Trainor, 2018). Females show a higher incidence 
of suicidal intent and suicide attempts, although the rate of completed suicides is much higher 
in males (2 to 5 times) (Freeman et al., 2017). Suicide risk factors have also been found to differ 
between the sexes (Oquendo et al., 2007). While multiple psychosocial factors are likely to be 
contributing to these differences (Canetto and Sakinofsky, 1998), sexual dimorphisms in the brain 
might play an important role as well (Pallayova et al., 2019). For example, structural and functional 
dimorphisms in the LC-NE system and its regulation by estrogen in females is associated with 
an increased susceptibility to hyperarousal (Bangasser et al., 2016), which itself has been linked 
to a higher risk of suicidal ideation (Steyn et al., 2013; Morabito et al., 2020; Dolsen et al., 2017). 
Preclinical studies also suggest important sex differences in how stressor controllability modulates 
stress reactivity. Unlike males, females do not seem to benefit from increased controllability, 
with the lack of engagement and structural plasticity within the PL-DRN pathway being a likely 
mechanism for these differences (Fallon et al., 2020). The model proposed here might help better 
understand how these differences impact stress reactivity and controllability, and how this affects 
response to ketamine as well as to other interventions (Fallon et al., 2020).

4.2 LIMITATIONS

While we have considered some of the most crucial neurocircuits and neuromodulatory systems 
at the overlap of stress response, aversive learning, behavioral control and STB, there remain other 
relevant regions to be considered (Schmaal et al., 2020; Lengvenyte et al., 2019). Of particular 
importance may be the lateral habenula (LHb), an epithalamic nucleus acting as a relay hub between 
forebrain and midbrain structures and playing a significant role in learning from non-rewarding and 
aversive experiences (Matsumoto and Hikosaka, 2009). The LHb is involved in stressor controllability 
effects via the DRN-5-HT system (Metzger et al., 2017) and is one of the locations targeted by 
ketamine that mediates the anti-depressant effects (Zanos and Gould, 2018; Yang et al., 2018a; 
Shepard et al., 2018). LHb activity has been associated with depressive symptoms of helplessness, 
anhedonia, and excessive negative focus (Yang et al., 2018b), while a recent study also reported 
higher resting state functional connectivity between LHb and several brain regions, including the 
amygdala, to be associated with STB independently of depressive symptoms (Ambrosi et al., 2019).

It is worth emphasizing that while a close consideration of the networks implicated in STB informed 
the construction of the model proposed here, the implementation of the model is not at the level of 
neural dynamics but rather at the level of higher-order computational mechanisms underwritten 
by such dynamics (cf. Marr’s levels of analysis (Marr and Poggio, 1976)). This means that the model 
variables might not necessarily neatly map onto distinct elements of the neurocircuitry but might 
interact with several other factors. For example, while we regard parameter c in the prior over 
outcomes to correspond to stress sensitivity and Amy activation, we could imagine other factors 
contributing to dispreference of the aversive outcome beyond its aversiveness per se, such as 
contextual factors relating to task engagement and a general motivation to do well in the task. 
Similarly, controllability threshold, w0, might reflect a combined influence of changes in vmPFC 
activation, its connectivity to the DRN, connectivity from the DRN to the Amy or even the LHb 
and the effects it exerts on the DRN-5-HT system. Future work, including modelling of the neural 
dynamics and gathering empirical data, will help clarify these relationships.

Related to the above limitations, it is also important to reiterate that the hypothesis space 
presented in this paper serves as a proof of concept and is not intended to be exhaustive. The 
emergence of STB risk factors in different contexts is most likely to involve other variables that 
we have not yet considered. Furthermore, our simulations explored only the simplest scenarios 
of varying one parameter at a time. Considering how these parameters interact provides another 
layer of complexity. For example, we could expect different subtypes of STB to be related not to a 
single parameter, but to a unique combination of multiple parameters, forming distinct clusters 
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within the multidimensional parameter space. Future work with empirical data will allow for the 
further refinement of the hypothesis space and the delineation of different STB subtypes.

Furthermore, in the work presented here we have not explicitly addressed the distinction between 
suicide ideators and suicide attempters. Recent accounts of suicidality argue that suicidal ideation 
and the progression from ideation to attempts should be treated as separate processes (Van 
Orden et al., 2010; Klonsky and May, 2015; O’Connor and Kirtley, 2018; Bryan et al., 2020; Klonsky 
et al., 2018). The active inference framework might be well suited to study these distinctions as it 
explicitly models and factorizes inferences about the states of the world (cf. suicidal ideation) and 
action selection (cf. suicide attempt). This will be more thoroughly explored in future work.

Our proposed model and the insights it provides is also limited by the behavioral task to which 
the model was applied. In the task considered here, the stimulus is completely unambiguous 
and there is only one decision per trial to make. Notably, in the special case when outcomes 
unambiguously specify hidden states, active inference reduces to a simpler KL-control model 
(Friston et al., 2015), and is similar to model-based reinforcement learning models that are driven 
by reward maximization (see Eq. (12) in S1 Appendix: full mathematical details of the model for 
more detailed explanation). Introducing sensory uncertainty and multiple decisions would allow 
for the utilization of the unique aspects of active inference, namely epistemic action – a goal-
directed sampling of information Friston et al. (2015). This would provide a more ecologically valid 
context to study the relationship between information sampling dynamics and STB. Such tasks 
would allow us to capture other phenomena relevant for STB, such as aversive generalization 
(how specific aversive events lead to negative beliefs about the world), its relationship to trauma, 
its effects on reduced problem-solving abilities (i.e. planning) and its influence on biases towards 
escape strategies (Linson and Friston, 2019; Linson et al., 2020).

Finally, it also important to point out that most of the model parameters that we focused on 
in this paper are not unique to the active inference framework. To explain the active-escape 
bias phenomenon, we had to introduce additional parameters and computations. Namely, we 
introduced the dependency of the learning rate on outcome values and the dependency of 
outcome values on controllability, with controllability being another addition in itself. Such a 
modelling approach where additional parameters and computations are added on top of the 
existing ones is not uncommon and has been applied in many reinforcement learning modelling 
approaches focused on Pavlovian and instrumental control mechanisms (e.g., Dorfman and 
Gershman, 2019; Guitart-Masip et al., 2012; Mkrtchian et al., 2017; Na et al., 2021; Grossman et 
al., 2021). However, it contrasts with most of the developments in active inference, where model 
extensions are derived from the free energy functional. While we justified the introduction of these 
computations by relying on a large body of literature investigating the mechanisms of interest, a 
more principled derivation of computations capturing these mechanisms might be possible.
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	Figure 1b
	Figure 1b

	Millner et al., 
	2019
	Schmaal et al., 2020

	2.1.3 Controllability: stress and serotonin
	Recent work has shown that controllability of action outcomes governs arbitration between Pavlovian and instrumental control in line with BMA (). These effects were found to be associated with frontal midline theta power, which suggests involvement of the mPFC and the ACC (). Furthermore, it has been proposed that dorsal ACC (dACC) could be understood as encoding the expected value of control (). This is very similar to what we have proposed in relation to hopelessness. Indeed, controllability and hopelessn
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	Considering these findings, we introduce a computational distinction between hopelessness and controllability. As we have defined it earlier, hopelessness corresponds to negative instrumental state-action beliefs that are encoded in the ACC and are arrived at via LC-mediated updates. Controllability, on the other hand, we associate with the vmPFC-DRN-Amy network and thus with 5-HT-modulated stress response. Instrumental state-transition beliefs encoded in the ACC underlie inference about future states and f
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	In suicidality, a large body of research points to deficits in the serotonergic system (; ). While lower 5-hydroxyindoleacetic acid (5-HIAA) levels – a major serotonin metabolite – in the cerebrospinal fluid (CSF) suggest reduced overall serotonergic activity (), serotonin in the brainstem is found to be elevated (), with serotonergic action being elevated in the DRN due to less reuptake (). Furthermore, studies also report elevated serotonin binding in the Amy () and fewer serotonin transporters in the vmP
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	Here we propose that a reduced sense of controllability stemming from vmPFC-DRN-Amy network impairments (, pink) can lead to a stronger Amy activation in response to stress, thus increasing learning from negative outcomes and leading to hopelessness and stronger Pavlovian biases. Impairments in the vmPFC have been associated with impulsive suicide attempts (), which would be in line with larger belief updates in response to stressors.
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	2.2 MODEL IMPLEMENTATION
	In the previous sections we have laid out a conceptual picture of our proposed model by considering various computational and neurobiological findings. In this section, we will present one possible computational implementation by focusing on an Avoid/Escape Go/No-Go task (). Note that the implementation of the model is not at the level of neural dynamics but rather at the higher level of computational mechanisms underwritten by such dynamics (cf. Marr’s levels of analysis ()). However, the active inference 
	Figure
	Figure
	 2a

	Marr and Poggio, 1976
	Smith et al., 2021
	Constant et al., 2021

	The task employs a 2 × 2 (Go/No-go x Avoid/Escape) factorial design. On every trial, the agent is presented with one of four cues. Two of the cues are always paired with an aversive sound (Escape condition) while the other two are paired with silence (Avoid condition). The agent’s goal is to learn, for each cue, which response (active Go or passive No-go) more frequently results in silence during feedback. For ease of reference, we will refer to the responses that maximize the frequency of silence during th
	To model this task, we use an active inference scheme for discrete Markovian models (), which means that we will be dealing with discrete time steps (t), states (s), actions (a), and observations (o). Each trial gets divided into three time steps. At t = 1, the agent is in one of four possible hidden states with no informative observations about the task conditions available (e.g., a fixation cross is displayed, which does not contain any information on which cue will be presented next). At t = 2, the agent
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	2016
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	Figure 2 Avoid/Escape Go/No-Go task design and model specification. (a) Following Millner et al. (2018; 2019) the task has 4 cues corresponding to the 2 × 2 (Go/No-Go x Avoid/Escape) factorial task structure, with 2 possible outcomes: aversive or neutral. For modelling purposes, the task was divided into 3 discrete time points. At the start of a trial (t = 1) the agent is in one of the four hidden states (s1–4) and no observations are available (o1). Next, the agent is taken to t = 2, where a cue (and in th
	Figure 2 Avoid/Escape Go/No-Go task design and model specification. (a) Following Millner et al. (2018; 2019) the task has 4 cues corresponding to the 2 × 2 (Go/No-Go x Avoid/Escape) factorial task structure, with 2 possible outcomes: aversive or neutral. For modelling purposes, the task was divided into 3 discrete time points. At the start of a trial (t = 1) the agent is in one of the four hidden states (s1–4) and no observations are available (o1). Next, the agent is taken to t = 2, where a cue (and in th

	After each trial, the agent updates their beliefs depending on the outcome in that trial. Since there is no ambiguity about observations due to their saliency, we assume all learning to concern only state transition probabilities (B). Columns in B matrices are Dirichlet distributions parameterized with concentration parameters b, such that for a control state u, B(u) = Dir(b(u)). Concentration parameters can be interpreted as the number of times various combinations of state transitions have been observed, 
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	where i denotes the trial number, u denotes the control state (Go or No-Go) and  contains posterior probabilities of different states under each policy p for time point τ. Note that in the current implementation, we only care about τ = 3, because the transition between t = 1 and t = 2 does not depend on the agent’s choices. π denotes posterior policy probabilities.
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	The sum in the second term of the equation is performed only over the two instrumental policies. This means that in an extreme case where behavior is driven primarily by the Pavlovian policy and the probabilities of instrumental policies are very low, there will be very little learning even though the agent has the information to update their beliefs about state transitions. To account for instrumental learning facilitated by Pavlovian responses (), one could consider combining the posterior probabilities o
	Holmes et al., 2010

	The remaining two parameters η and λ in Eq. (1) control the learning rate and the decay rate, respectively. The learning rate controls how much new experiences add to the existing concentration parameters, while the decay rate controls how much the previously accumulated concentration parameters should be discounted. Without the decay factor, concentration parameters would accumulate indefinitely making the agent too rigid and thus too slow to adapt if environmental contingencies were to change. Following t
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	where g is the gradient, m is the midpoint, while λ and λ are minimum and maximum function values. Note that higher SAPEs will result in a smaller λ, which will result in more belief decay because λ is a denominator in the update equation Eq. (1). SAPE itself is defined as Kullback-Leibler (KL) divergence between BMA distributions at successive time steps:
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	In the simulations presented in this paper, SAPE is computed for t = 3, after the action (Go/No-Go) is performed and only for predictions about the final states (τ = 3). BMAs themselves are computed via:
	  (4)
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	where  denotes posterior policy probabilities and  denotes posterior state probabilities for policy p at time point τ.
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	In addition to being sensitive to environmental change (i.e. volatility), the LC-NE system also coordinates aversive learning mediated by Amy-LC connectivity (; ). To capture these effects, we introduce a learning rate dependency on outcome valence (assuming Amy activation during aversive outcomes), which we associate with the preference against aversive outcomes encoded in the C vector:
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	where C(o) is the value of prior preference for outcome o, with the parameterization being -c for the aversive stimulus outcomes and 0 for the neutral outcomes. Parameter k is a scaling factor that could correspond to effective connectivity between the Amy and the LC. Note that the learning rate dependence on valence that we introduce here is what enables the model to account for affective biases (; ; ; ). A more principled implementation of valence and its role in modulating the learning rate could depend 
	Pulcu and Browning, 2017
	2019
	Sharot and Garrett, 2016
	Eshel and Roiser, 
	2010
	Joffily and Coricelli, 2013

	The final component of the model aims to account for how controllability of aversive outcomes inhibits Amy activation via the serotonergic system involving vmPFC-DRN-Amy network (; ). We implement this by modulating stress sensitivity parameter c by a controllability parameter w:
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	In the limiting cases when there is no control (w = 0), c′ is equal to the original c and when there is complete control (w = 1) c′ is equal to 1. Controllability itself is assumed to depend on on beliefs that the neutral outcome can be reached:
	  (7)
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	where  contains expected outcomes at time point τ = 3 at time t = 2; and here we are summing over the two possible neutral outcomes (o and o) for time point τ = 3. Expected outcomes are simply a product of the likelihood of observations A and BMA expected states Sτ. This means that the subjective estimate of controllability depends on inferred and expected states, and not on actual states of the world. Parameter w effectively represents an average probability of achieving the desired outcome in the inferred
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	Finally, to collectively account for any impairments of how w modulates the stress response (i.e., any impairments along the vmPFC-DRN-Amy network), we transform w into the final estimate of controllability by entering it into a logistic function constrained by a controllability threshold w (i.e. the midpoint of the logistic function) and a gradient g:
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	The dependency of the learning rate on stress sensitivity (c), means that controllability can indirectly regulate learning rate through its effects on stress sensitivity. This is in line with recent findings showing that DRN serotonin neurons modulate the learning rate and they do so in proportion to uncertainty about decision outcomes (), which is also in agreement with how we implemented controllability (Eq. (7)).
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	Note that even though we have provided a reasonable theoretical justification for introducing the controllability component, it is a rather ad hoc addition to the otherwise computationally principled active inference framework. It is important to stress, however, that the simulation results that we present in the next section do not hinge on this additional computation, except for the results concerning the controllability parameter itself.
	 summarizes the proposed computations as well as their possible neural correlates and highlights parameters of interest for STB.
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	3 RESULTS
	3.1 MODEL SIMULATIONS
	To validate the model, we first simulated performance on the task for a single healthy control (), and then showed how increasing parameter k – which regulates aversiveness-related component of the learning rate and is assumably represented in terms of Amy-LC connectivity – can produce increased active-escape biases and other behavioral and cognitive aspects associated with suicidality (). Finally, we defined a wider hypothesis space, exploring how different parameters in the model can independently lead to
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	For the initial simulations (and), we ran 200 trials of the task, where at every trial one of the 4 cues was presented at random. After 100 trials, the meanings of the cues were reversed: Go becoming No-Go and vice versa. In this simulation, the model parameters were set to k = 0.1, m = 1.3, c = 8, w = 0.5, z = 0.4, λ = 2, λ = 50, α = 3 and β = 1 to produce reasonable performance trajectories as well as an active-escape bias () consistent with empirical findings reported by . As the agent’s beliefs approach
	Figures 4 
	 5 
	0
	min
	max
	Figure 4a
	Figure 4a

	Millner et al. (2018)
	Figure 4f-i
	Figure 4f-i

	Figure 4d
	Figure 4d

	Figure 4e
	Figure 4e

	Figure 4f-i
	Figure 4f-i


	Figure 4 Model simulations: a single (healthy control) participant with low stress weight (k = 0.1). (a-c) average choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-Go-to-Avoid (NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues used in the task. The results in (a) reproduce active-escape bias reported by Millner et al. (2018) in the general population. (b) and (c) are additional predictions about performance after rever
	Figure 4 Model simulations: a single (healthy control) participant with low stress weight (k = 0.1). (a-c) average choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-Go-to-Avoid (NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues used in the task. The results in (a) reproduce active-escape bias reported by Millner et al. (2018) in the general population. (b) and (c) are additional predictions about performance after rever

	By increasing parameter k to 1, the size of the belief update after experiencing aversive outcomes becomes larger, reproducing the increased active-escape bias () by a similar magnitude as reported in individuals with STB (). The increase in the active-escape bias is a direct consequence of the increased influence of the Pavlovian policy (, black line), which in turn is a consequence of weaker beliefs that either of the instrumental Go/No-Go actions will lead to the desired neutral outcome (cf. hopelessness
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	Figure 5 Model simulations: a single (STB) participant with a high stress weight (k = 1). (a-c) average choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-Go-to-Avoid (NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues used in the task. The results in (a) reproduce increased active-escape bias in suicidality reported by Millner et al. (2019), and predict that this bias would be even larger after a reversal in cue meanings
	Figure 5 Model simulations: a single (STB) participant with a high stress weight (k = 1). (a-c) average choice accuracy before reversal, after reversal and overall, respectively, for Go-to-Avoid (GA), No-Go-to-Avoid (NGA), Go-to-Escape (GE) and No-Go-to-Escape (NGE); the four colors denote different cues used in the task. The results in (a) reproduce increased active-escape bias in suicidality reported by Millner et al. (2019), and predict that this bias would be even larger after a reversal in cue meanings

	3.2 MULTIPLE ROUTES TO AN ACTIVE-ESCAPE BIAS
	While directly increasing learning from aversive outcomes (k) is one way to produce the effects associated with STB, there is a wider hypothesis space to be explored. To that end, we performed a more extensive investigation of the effects of other model parameters. In this context, it is important to note that the model exhibits a considerable degree of stochasticity when initiated with the chosen parameter configurations and thus, the results presented earlier in and are meant to be primarily illustrative.
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	Reducing base belief decay (increasing parameter m) produces similar results of more negative beliefs, a higher probability of the Pavlovian policy and a stronger active-escape bias (). We also see a deterioration of the overall performance accuracy after the reversal, as the agent is slow to adapt to new contingencies (). Although very little research exists on reversal learning in suicidality, the latter result is in line with impaired reversal learning demonstrated in a reward/punishment probabilistic le
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	A higher stress sensitivity (larger c) also produces the effects associated with STB: more negative beliefs () lead to a higher probability of the Pavlovian policy () and a stronger active-escape bias (). Finally, the overall performance accuracy () shows a non-linear dependence on stress sensitivity, which is reminiscent of the inverted U-shaped relationship between stress and performance (; ). It is important to note that the c parameter features in the model twice: first, in the prior over outcomes, and 
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	Reducing perceived controllability (increasing w) is yet another way to produce the effects associated with STB. By way of a self-fulfilling prophecy, a reduced controllability threshold leads to more negative beliefs (), which induces increases in the Pavlovian policy probability () and an active-escape bias (), as well as a slight decrease in the overall performance accuracy ().
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	3.3 COMPUTATIONAL PARAMETERS REVEAL STB SUBTYPES
	While all of the above parameter manipulations lead to similar mean behavioral effects, inspecting the time series reveals different dynamics of belief updating and policy probabilities (). Using NGE/NE cue as an example, for high m values (low belief decay rate), we can see a very gradual progression towards more negative beliefs and an increased influence of the Pavlovian policy (). For high w (low controllability), high k (high stress weight) and high c (high stress sensitivity), we see increasingly larg
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	4 DISCUSSION
	In this paper, we presented a computational model of hopelessness and Pavlovian/active-escape bias in suicidality. With this model we showed that increased Pavlovian control and active-escape biases result from state hopelessness via the drive to maximize model evidence. Moreover, we proposed how hopelessness itself can arise from four mechanisms: (1) increased learning from aversive outcomes, (2) reduced belief decay in response to unexpected outcomes, (3) increased stress sensitivity and (4) reduced sense
	Millner et al., 2019
	2018

	First, it is worthwhile to elaborate on what advantages and new insights our proposed model brings compared to previous modelling work.  analyzed the increased active-escape bias in STB using a combined reinforcement learning – drift diffusion model (RL-DDM) and found that an increased active-escape bias can be explained by a bias parameter (aka a starting point in the DDM part of the model). This parameter was assumed to be constant throughout the task. In contrast, our proposed model offers a mechanistic 
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	Our model simulation results offer a computational hypothesis space by identifying mechanistically distinct perturbations that lead to hopelessness and Pavlovian/active-escape biases associated with STB. These distinct pathways might also speak to different suicidality subtypes: impulsive versus planful (; ). While all of the four parameter manipulations produced increased Pavlovian control and active-escape biases, examining the trajectories of belief updating revealed that reduced belief decay led to more
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	While throughout the paper we have adopted a transdiagnostic view of STB, many mental disorders are known to increase suicide risk. Among all disorders, borderline personality disorder (BPD), depression, bipolar disorder, schizophrenia, and anorexia nervosa show the highest risk of suicide – between 10 to 45 times higher than the general population (). Comorbidities further increase suicide risk by inflicting higher levels of distress (; ), with the majority of suicides being estimated to occur within a maj
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	4.1 MODEL-BASED SUICIDALITY SUBTYPES AND PERSONALIZED INTERVENTIONS
	Being able to stratify the propensity for suicidal behavior into mechanistically distinct subgroups could help improve early interventions and treatment response prediction. Many different psychotherapies are applied in the context of suicidality, including the manualized therapies such as CBT, Dialectical Behavior Therapy (DTB), and mentalization-based therapy (MTB). However, evidence for the effectiveness of different psychotherapies is still scarce and it remains unclear which components of the therapies
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	When it comes to pharmacotherapy, sub-anesthetic doses of ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, is currently one of the most promising interventions for rapid reduction of STB, but only 55–60% of individuals respond with a complete remission (). The exact mechanism through which ketamine achieves its anti-suicidal and anti-depressant effects is still not fully understood (). Many hypotheses emphasize the importance of increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid rec
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	Personalization of early interventions could also be improved by a more mechanistic understanding of sex differences as it relates to STB (). Females show a higher incidence of suicidal intent and suicide attempts, although the rate of completed suicides is much higher in males (2 to 5 times) (). Suicide risk factors have also been found to differ between the sexes (). While multiple psychosocial factors are likely to be contributing to these differences (), sexual dimorphisms in the brain might play an imp
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	4.2 LIMITATIONS
	While we have considered some of the most crucial neurocircuits and neuromodulatory systems at the overlap of stress response, aversive learning, behavioral control and STB, there remain other relevant regions to be considered (; ). Of particular importance may be the lateral habenula (LHb), an epithalamic nucleus acting as a relay hub between forebrain and midbrain structures and playing a significant role in learning from non-rewarding and aversive experiences (). The LHb is involved in stressor controlla
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	It is worth emphasizing that while a close consideration of the networks implicated in STB informed the construction of the model proposed here, the implementation of the model is not at the level of neural dynamics but rather at the level of higher-order computational mechanisms underwritten by such dynamics (cf. Marr’s levels of analysis ()). This means that the model variables might not necessarily neatly map onto distinct elements of the neurocircuitry but might interact with several other factors. For 
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	Related to the above limitations, it is also important to reiterate that the hypothesis space presented in this paper serves as a proof of concept and is not intended to be exhaustive. The emergence of STB risk factors in different contexts is most likely to involve other variables that we have not yet considered. Furthermore, our simulations explored only the simplest scenarios of varying one parameter at a time. Considering how these parameters interact provides another layer of complexity. For example, w
	Furthermore, in the work presented here we have not explicitly addressed the distinction between suicide ideators and suicide attempters. Recent accounts of suicidality argue that suicidal ideation and the progression from ideation to attempts should be treated as separate processes (; ; ; ; ). The active inference framework might be well suited to study these distinctions as it explicitly models and factorizes inferences about the states of the world (cf. suicidal ideation) and action selection (cf. suicid
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	Our proposed model and the insights it provides is also limited by the behavioral task to which the model was applied. In the task considered here, the stimulus is completely unambiguous and there is only one decision per trial to make. Notably, in the special case when outcomes unambiguously specify hidden states, active inference reduces to a simpler KL-control model (), and is similar to model-based reinforcement learning models that are driven by reward maximization (see Eq. (12) in S1 Appendix: full ma
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	Finally, it also important to point out that most of the model parameters that we focused on in this paper are not unique to the active inference framework. To explain the active-escape bias phenomenon, we had to introduce additional parameters and computations. Namely, we introduced the dependency of the learning rate on outcome values and the dependency of outcome values on controllability, with controllability being another addition in itself. Such a modelling approach where additional parameters and com
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	Figure 1 Hypotheses. (a) A computational cycle of active inference (black) and potential perturbations at different stages in the cycle (red). These perturbations can give rise to hopelessness – a belief that any taken action will lead to undesired states – and an increased influence of Pavlovian relative to instrumental modes of behavior (teal), both of which are associated with suicidality. (b) The brain network that we hypothesize to support the proposed perturbations: norepinephrine modulates belief upd
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	Figure 3 Summary of the proposed computations, possible neural correlates and parameters of interest for STB. Within the proposed model there are four areas of relevance for STB: learning rate, belief decay rate, stress reactivity and perceived controllability of a stressor. Stress weight parameter, k, controls the boost in the learning rate in response to stress. Increasing this parameter would result in increased learning from stressful outcomes. Stress sensitivity parameter, c, captures individual sensit
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	Figure 6 Model simulations: exploration of the hypothesis space. Each column shows the effects of varying on of the parameters: k – stress weight (while m = 1.3, c = 8, w = 0.6), m – belief decay threshold (while k = 0.7, c = 8, w = 0.6), c – stress sensitivity (while k = 0.6 m = 1, w = 0.5) and w – controllability threshold (while k = 0.9, m = 1.3, c = 8). (a-d) the mean of beliefs that the neutral state will be reached averaged across 4 contexts and 2 possible actions. (e-h) The mean probability of choosi
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	Figure 7 Model simulations: trajectories of beliefs and policies under different parameter manipulations. (a) low belief decay, m = 2, (b) low controllability, w = 0.8, (c) high stress weight, k = 1.1, (d) high stress sensitivity, c = 20. The other parameters were set to the same values as in Figure 6. All panels show trajectories of NGE/NE cue: where the cue is NGE before the reversal (the vertical dashed line) and GE after the reversal. Less variable rigid negative beliefs and Pavlovian policy in (a) coul
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