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ABSTRACT
A general consensus persists that sensory-perceptual differences in autism, such as 
hypersensitivities to light or sound, result from an overreliance on new (rather than prior) 
sensory observations. However, conflicting Bayesian accounts of autism remain unresolved 
as to whether such alterations are caused by more precise sensory observations (precise 
likelihood model) or by forming a less precise model of the sensory context (hypo-priors 
model). We used a decision-under-uncertainty paradigm that manipulated uncertainty 
in both likelihoods and priors. Contrary to model predictions we found no differences in 
reliance on likelihood in autistic group (AS) compared to neurotypicals (NT) and found 
no differences in subjective prior variance between groups. However, we found reduced 
context adjustment in the AS group compared to NT. Further, the AS group showed 
heightened variability in their relative weighting of sensory information (vs. prior) on a 
trial-by-trial basis. When participants were aligned on a continuum of autistic traits, we 
found no associations with likelihood reliance or prior variance but found an increase in 
likelihood precision with autistic traits. These findings together provide empirical evidence 
for intact priors, precise likelihood, reduced context updating and heightened variability 
during sensory learning in autism.
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INTRODUCTION
Sensory processing alterations, which can affect one or more sensory modalities (Tavassoli et al, 
2014b), are reported in around 90% of autistic adults (Crane et al, 2009). Autistic individuals can 
show improved performance in visual search tasks (Plaisted et al., 1998; Joseph et al., 2009) and 
visual and auditory target detection (Mottron et al., 2000), compared to neurotypicals. However, 
sensory processing dysfunction (e.g. hypo- or hyper-sensitivities) can inhibit participation in 
activities such as learning and social interaction, which in turn impose lifelong challenges (Suarez, 
2012). Due to the heterogeneous nature of perceptual function in autism, current diagnostic 
measures, such as the Autism Diagnostic Observation Schedule (ADOS), have significant 
limitations in characterizing the nature of perceptual experiences in people with a diagnosis of 
Autism Spectrum Disorder (ASD), and can only be applied for specific degrees of severity and age 
along the autism spectrum (Haker et al, 2016). Thus, better characterization of the mechanisms 
that give rise to autistic perception should help in understanding perceptual subtypes and could 
pave the way for personalized interventions.

“Bayesian brain” accounts for autism have offered explanations for perceptual differences in 
autism (Brock, 2012; Haker et al, 2016; Lawson et al, 2014; Pellicano & Burr, 2012; Van de Cruys 
et al, 2014). Simply stated, a Bayesian approach to sensory learning posits that during learning 
individuals form models, encoded as priors, by detecting patterns in the environment (Figure 1A). 
New incoming information (i.e., likelihood) is then matched against these priors. The internal 
model (prior) about the sensory environment is updated with new sensory information until 
model updating is no longer necessary in a stable environment (Penny, 2012). This framework 
has proven useful in explaining typical sensory learning and decision-making under uncertainty. 
According to Bayes theorem, posteriors (or perceptual decisions) will combine both prior and 
likelihood information but give more weight to whichever source has a higher precision (i.e., the 
lower variance). In autism, however, it is theorised that this process may be altered due to an 
imbalance of precision ascribed to sensory observations relative to prior beliefs (Lawson et al, 
2014); (Note we use precision here in its statistical sense, which is the inverse of variance). From 
a Bayesian perspective, this likelihood over-reliance can be formalised mathematically as a shift 
in the posterior toward the sensory observation (likelihood) and away from the prior (belief). This 
shift can be attributed to different underlying causes. The “hypo-priors model” ((Pellicano & Burr, 
2012); Figure 1B) suggests that the shift is caused by noisier or less precise (high variance) priors, 
equivalent to a weak model (or belief) of the environment. The “precise likelihood model” ((Brock, 
2012); Figure 1C) argues instead that priors are intact, but there is an increase in the precision 
associated with sampling new information, such that sensory representations are more narrowly 
tuned. The conundrum is that given the relative difference in the precision of priors and likelihoods 
under the hypo-priors and precise likelihood models, the two accounts effectively give rise to the 
same posterior means. 

Amongst the criticisms of these Bayesian theories, it has been argued that while they can 
explain hypersensitivities and sensory overload, they do not account for hyposensitivity or other 
perceptual disruptions in autism such as weak global coherence (Teufel et al, 2013; Van de Cruys et 
al, 2014). Some studies investigating aberrant precision models in autism have found that children 
and adults on the autism spectrum are able to learn priors (Croydon et al, 2017; Pell et al, 2016), 
while other studies have shown that this process is altered (Skewes et al, 2015). Evidence for 
the precise likelihood model (Figure 1C) has been supported by a study showing that increasing 
autistic traits correlated with increasing precision in likelihood in a neurotypical sample (Karvelis 
et al., 2018), but not in prior representations. In contrast, another study which employed a signal 
detection approach provided evidence in support of the (weak) hypo-priors model (Skewes et al, 
2015), again in a sample of neurotypical individuals. Further a study investigating central tendency 
in autistic children demonstrated poorer performance in autistic children than matched controls 
(Karaminis et al, 2016) indicating evidence for a hypo-priors model.
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Figure 1 Bayesian models of 
atypical perception in Autism. 
A) Bayesian models postulate 
that in typical learning – 
new sensory observations 
(likelihood; red) are integrated 
with the learned model of the 
world (Prior; blue), leading to a 
perception/decision (posterior; 
orange). B) Hypo-prior model 
for Autism (Pellicano & Burr, 
2012): A weak model of the 
world (high variance in the 
prior) increases the reliance 
on new sensory observations 
(likelihood) that are relatively 
more precise than the prior 
(but as precise in autistic as in 
typical individuals) C) Precise 
Likelihood Model (Brock, 2012): 
Overly precise new sensory 
observations (likelihood has 
less variance than in typical 
individuals, and more precise 
than the prior) can increase 
the reliance on new sensory 
observations. 

In this study, we took a Bayesian approach to better understand how prior and likelihood 
information is utilized during visual sensory learning and perceptual decision-making in 
autism. Specifically, we investigated: 1) whether autism spectrum (AS) individuals rely more on 
sensory than on prior information compared with neurotypicals (NT), and 2) whether precision 
in prior and likelihood distributions differs between AS and NT groups.  Further, given the 
utility of undertaking a hybrid of categorical and dimensional approaches to understanding 
autism (Abu-Akel et al, 2019; Kim et al, 2019), we also investigated how autistic traits and 
sensory sensitivities are related to the relative weighting of prior and new information during 
a perceptual decision. Here, we empirically assess these theoretical models by employing 
Bayesian modelling of behavioural data captured in a task that manipulates uncertainty in priors 
and likelihoods (Körding & Wolpert, 2004; Vilares et al, 2012; Vilares & Kording, 2017). These 
studies have consistently demonstrated that people integrate prior and likelihood information 
in a qualitatively Bayesian-like fashion. While people often do not behave in a (quantitatively) 
perfectly Bayesian optimal way, the ways in which they deviate from this optimality can give us 
insights into the subjective information they have available (Tauber et al, 2017). Thus, because 
we are using Bayes as a framework to understand perceptual processes in autism, we do not 
test, nor do we compare the above-mentioned Bayesian models with non-Bayesian accounts 
of perceptual processes in autism. Our goal was to shed light on computational models of 
perception in autism.

METHODS
PARTICIPANTS

We recruited a total of 80 adult participants (48 Neurotypicals and 32 participants who self-
identified as having received a diagnosis of autism spectrum disorder). Recruitment was 
undertaken via Asperger’s Services Queensland, Autism Queensland, Mind and Hearts, The 
University of Queensland (UQ) online SONA system, and online advertisements. All participants 
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(or their guardians) completed an online screening form. Participants were included in the study 
if they were between the ages of 18 – 35 years and had no history of neurological abnormalities. 
Autistic participants were recruited initially if they reported having received a diagnosis of autism 
spectrum disorder from a clinician. Neurotypical participants had an additional inclusion criterion 
of no history of neurological abnormalities or psychological disorders and reported no current use 
of any medication acting on the nervous system. For group analysis, the autism spectrum (AS) 
group had 25 participants with a confirmed diagnosis of ASD, and the neurotypical (NT) group had 
age and gender matched 25 participants. For the dimensional analysis all 80 participants were 
included, this consisted of 48 neurotypical, 25 autistic and 7 ‘other’ participants who could not 
be confirmed as being on the autism spectrum using the ADOS. Thus, no participant’s data were 
excluded from the study. All participants provided written informed consent to participate in the 
study and were compensated at a rate of AUD20 per hour for their participation in the study. This 
study was approved by the Human Research Ethics Committee of The University of Queensland 
(Approval No.: 2019000119).

PROCEDURE

32 participants who reported having received a diagnosis of ASD from a clinician undertook a 
diagnostic interview with a clinical psychologist using the Autism Diagnostic Observation Schedule 
(ADOS) for Adults (Gotham, 2006; Hus & Lord, 2014), to confirm diagnosis and characterize 
symptom severity. The assessment lasted approximately 1-hour and was conducted on a 
separate day from the experimental sessions. Of the 32 participants, six individuals who scored 
below 3 on the ADOS were excluded from the autism spectrum group analysis. Additionally, one 
participant with a self-r of ASD was not available to complete the ADOS assessment. Thus, a total 
of 25 participants were confirmed to be on the autism spectrum and were included in the autism 
spectrum (AS) group (See Figure 1). 

PSYCHOMETRIC MEASURES

All participants completed self-report questionnaires including the 50-item Autism Quotient 
(AQ) questionnaire (Baron-Cohen et al, 2001) and 93-item Sensory Processing Quotient (SPQ) 
Questionnaire (Tavassoli et al, 2014a) which were used to measure autistic traits and sensory 
sensitivities respectively. Participants also completed the Beck Anxiety Inventory (Beck et al, 1988) 
and Beck Depression Inventory (Beck et al, 1961).

2-PRIOR COIN TASK (VILARES ET AL. 2012)

Participants engaged in a modified version of the visual decision-making task developed by 
Vilares and colleagues (2012), performed either in a 3T Magnetic Resonance Imaging scanner 
(AS = 28 and NT = 47) or outside of the scanner at a computer (AS = 4 and NT = 1). Participants 
were shown an image of a pond on a screen (Figure 2) and were told that someone was 
throwing a coin to the middle of the pond (i.e., the middle of the screen). Participants were 
told that they would see trials from two different coin-throwers and that one was better at 
throwing to the centre than the other. Unbeknownst to the participant, thrower A was more 
precise than thrower B (with order counterbalanced across participants), throwing the coin 
closer to the middle more often (narrow prior) than thrower B (wide prior).  Before each block, 
participants were shown which thrower (Thrower ‘A’ or Thrower ‘B’) was throwing next. On each 
trial, participants were shown five blue dots representing the splashes that the coin made when 
falling into the pond. For each trial, participants were instructed to use a keyboard/button box 
to move a blue bar (“net”) horizontally across the screen to where they thought the coin had 
fallen on that trial. Next, participants moved a bar horizontally to rate how confident they were 
about their decision on a scale ranging from 0 (Guessing) – 100 (Confident). All these events 
were self-paced. The participant was then shown the true position of the coin, as a yellow dot, 
for 1500 ms.
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Figure 2 Coin Task Set up. A) 
Task design adapted from 
Vilares et al. (2012): the four 
conditions of the task – with 
two types of prior (PN = narrow 
prior; PW= wide prior) and two 
types of likelihood (LN= narrow 
likelihood; LW= wide likelihood) 
uncertainty. B) The time course 
of a single trial: participants are 
asked to estimate the position 
where a coin fell given where 
the 5 splashes appeared. C) The 
trials were organized into 24 
short blocks of 12 trials each 
with participants being told at 
the beginning of each block 
which thrower (“A” or “B”) will 
be throwing the coin (blue 
bar). Four types of trials are 
shown – Narrow Prior – Narrow 
Likelihood (PNLN, black); Narrow 
Prior – Wide Likelihood (PNLW, 
grey); Wide Prior – Narrow 
Likelihood (PWLN, red); and Wide 
Prior – Wide Likelihood (PWLW, 
orange).

The prior variance was manipulated across blocks as follows. The coin position was drawn 
from a Gaussian distribution in every trial, centred on the centre of the screen with a 
standard deviation that was either narrow (σPN = 2.5% of the screen width; Thrower A) or wide 
(σPW = 8.5% of the screen width; Thrower B) across blocks. The true prior variance was constant 
within a block, whereas the variance of the likelihood changed pseudo-randomly within a 
block. The variance of the splashes (i.e., the five blue dots) was the true likelihood variance. 
The spread of these dots could be narrow or wide, corresponding to narrow or wide likelihood 
variance, respectively. The position of the five dots on the x-axis of the screen was drawn 
from a Gaussian distribution with a mean corresponding to the true coin position and standard 
deviation either narrow (σLN = 6%) or wide (σLW = 15%). Where the variance of the five dots on 
the x-axis was narrow, the standard deviation of the dots on the y-axis was wide (σ = 15%), 
and correspondingly narrow (σ = 6%) on y-axis if wide on the x-axis. This was to ensure that 
the total area of the spread of the dots was uniform across both narrow and wide conditions 
and was the same area on the visual regions. However, since participants moved the bar only 
on the x-axis the true likelihood variance on each trial was calculated as the standard deviation 
on the x axis.

Thus, the experiment conformed to a 2 × 2 design with Prior (wide and narrow) by Likelihood 
(wide and narrow), consisting of 4 types of trials/conditions: Narrow Prior – Narrow Likelihood (PNLN, 
black); Narrow Prior – Wide Likelihood (PNLw, grey); Wide Prior – Narrow Likelihood (PwLN, red); and 
Wide Prior – Wide Likelihood (PwLw, orange). 

The practice task: consisted of only 2 blocks (one per thrower/prior type, with 40 trials each 
thrower), taking between 10–15 minutes to complete. 
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The main task: consisted of 12 blocks per Prior, with each block having 12 trials from a single 
thrower (Thrower A or B) with 2 types of likelihoods (narrow/wide). Before the thrower changed 
participants were instructed as to which thrower, A or B, would be throwing next (5 seconds); See 
Figure 2C. In total, the main task consisted of 288 trials (72 trials per condition). The task duration 
was self-paced and took between 35 and 60 minutes to complete.

LIKELIHOOD ONLY TASK

After completing the 2-Prior Coin Task, participants completed a Likelihood Only Task outside 
of the scanner at a computer. Four participants in the AS group and one participant in the NT 
did not complete this task, as they did not wish to continue due to fatigue. The aim of this task 
was to estimate the participant’s perceived likelihood distribution, i.e., how the participants 
represent the centre of the dots on their own, without prior knowledge. Participants saw trials 
as in Figure 2B. However, participants did not report confidence on this task and the true coin 
position was always the centre of the splashes. Participants were simply instructed to move 
the net to where they thought the centre of the splashes was (i.e., the middle of the 5 blue 
dots). The true centre of the dots was shown in yellow as feedback to each participant on 
every trial. This task consisted of only one block with 144 trials from 2 types of likelihood 
(narrow/wide) and took between 15–20 minutes to complete. This task was conducted after 
the 2-Prior Task, as we expected that the participants would be biased towards the centre 
of the splashes if they performed the Likelihood Only Task first and thus would have a 
difficulty in learning the prior in the main 2-Prior Task that followed. In hindsight, however, we 
acknowledge that this caused the participants to carry over their priors (from the 2-Prior Task) 
to the Likelihood only tasks, hence defeating our purpose of having a no-prior task. Future 
studies may wish to consider administering the Likelihood-only task first or counterbalance the  
two tasks.

BEHAVIOURAL ANALYSIS

From Bayes rule, we can obtain what would be the optimal estimate for the position of the coin 
on each trial of the coin-catching task (For detailed workings see (Körding & Wolpert, 2004; Vilares 
et al, 2012)):

	


 


  
   

2 2

2 2 2 2X L P
est P L

L P L P � (1)

where Xest is the estimated position of the coin (i.e., participant responses on each trial). (σ2
P, µP) 

and (σ2
L, µL) represent the variance and mean of the prior (i.e., participant’s subjective model of 

where each thrower would throw the coin) and likelihood/sensory observation distributions (i.e., 
participant’s subjective measure of the five blue dots).

ESTIMATING LIKELIHOOD VS. PRIOR RELIANCE 

As described in Vilares et al. (2012), for each condition we can fit a linear regression line to 
predict the participants’ estimated position of the coin for each trial (Xest) as a function of the 
likelihood mean (µL here are the centre of the splashes). The slope of the regression line (the term 





2

2 2
P

L P
) in equation (1) is the sensory weight (sw/likelihood reliance), which indicates how much 

the participant relies on the likelihood/sensory information (see Figure 3A). The closer the slope 
is to one, the more the participant relied on likelihood information (i.e., centre of five blue dots). 
If we assume that participants only rely on current and/or prior information (e.g., if we exclude 
random behaviour), then a slope closer to zero corresponds to relying more on the prior (i.e., 
centre of the screen), with anything in between indicating integration of the likelihood and the 
prior.

https://doi.org/10.5334/cpsy.69


146Randeniya et al. 
Computational Psychiatry  
DOI: 10.5334/cpsy.69

ESTIMATING A PARTICIPANT’S SUBJECTIVE PRIOR MEAN

From equation (1), the intercept of the regression line (the term 




 


2

2 2
L

L P
P) can be rearranged to 

calculate the prior mean acquired by the participant:

	  


 


0
P

 
1 sw � (2)

ESTIMATING PARTICIPANT’S TRIAL BY TRIAL SENSORY WEIGHTS

Equation (1) can be rearranged to obtain a trial-by-trial slope (i.e., sensory weight)

	  
 


  

P

L P

Slope  estX
� (3)

ESTIMATING PARTICIPANTS’ SUBJECTIVE PRIOR VARIANCE

Again, from equation (1), the slope or the sensory weight (sw) is equal to 




2

2 2
P

L P

. This can be 
rearranged to obtain the participant’s subjective prior:

	  


 


2
2

1
L

P
sw
sw � (4)

In equation 2, σ2
L can be assumed as the true or objective likelihood variance (given by the variance 

of the 5 blue dots). or can be estimated from the subjective likelihood variance (σ2
Ls; described 

below in equation 3). 

ESTIMATING A PROXY FOR SUBJECTIVE LIKELIHOOD VARIANCE

The variance of the participant’s estimates of the mean (µest) relative to the true mean of the 
splashes (µL) on the Likelihood Only task can be determined as a proxy for the participant’s 
subjective likelihood variance 2

Ls is as follows: 

	
  





2

est L2  )
Ls nTrials � (5)

STATISTICAL ANALYSIS

We aimed to understand if any of the current Bayesian models can explain sensory learning in 
autism. To test these models, we estimated the subjective prior and likelihood variance measures 
for each participant as described above. 

For group analyses, we conducted 2 × 2 × 2 repeated measures analysis of variance for each 
measure of interest, with Prior (narrow vs wide) and Likelihood (narrow vs wide) and Group 
(AS vs NT) as factors. The different outcome variables analysed were: 1) Sensory weight or likelihood 
reliance; 2) estimation error (i.e., participants’ estimate minus the true position of the coin) for 
narrow and wide likelihood conditions as the outcome variables; 3) subjective prior variance for 
each condition, and 4) average confidence. Independent Samples T-tests were conducted for post-
hoc pairwise comparisons. Where appropriate, Bayes factors (BF01) are also reported in support of 
evidence for the null hypothesis. For all group tests estimated marginal mean (EM Mean) and 
effect size (partial eta2/ηp

2) are reported. 

For the dimensional analyses, we conducted bootstrapped Spearman rank correlations with AQ 
and SPQ scores with likelihood reliance and subjective prior variance for the main 2-prior task. 
Bootstrapped 95% confidence intervals for Spearman correlations reported are based on 1000 
samples. For the Likelihood Only Task we excluded outliers based on Tukey’s 1.5 Interquartile 
Range. Based on this test 7 participants’ data (1NT and 3AS and 3 Other) were excluded. 
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In order to assess if continuum results were driven by group differences (AS vs NT vs other) we 
further, conducted multivariate analysis of covariance with AQ as covariate, Group as fixed factor 
and variable interest as the outcome variable to assess the interaction between group and AQ. 
Corrections for multiple comparisons are reported based on the Bonferroni correction procedure 
(pbonf) alongside the uncorrected p value. Bonferroni corrections are applied considering all 
statistical comparisons with a trait of interest (e.g., AQ score) within a task (i.e., within Likelihood 
Only or within 2-Prior Task). Statistical analysis was conducted in SPSS version 26 and R. Figures are 
presented using ggplot2 (Wickham, 2016) in RStudio. 

RESULTS
PARTICIPANTS

A total of 80 adults participated in the study. Demographic details and psychometric profiles are 
provided in Table 1. Group analysis was conducted on 25 participants confirmed to be on the autism 
spectrum (AS Group) and 25 age and gender matched neurotypical adults (NT group). The NT 
group showed lower autistic traits (t = –6.712, p = 2.161 × 10–8) and lower visual hypersensitivities 
(i.e., higher SPQ scores) than the AS group (t = 2.846, p = 0.007). The two groups showed no 
differences in anxiety (t = –1.466, p = 0.149) and depression (t = –1.980, p = 0.055).  However, 12 
participants in the AS group reported current anti-anxiety/antidepressant use and 5 participants 
reported medication for ADHD. Neurotypicals reported no current medication use. 

VARIABLE NEUROTYPICAL (NT) GROUP 
(N = 25)

AUTISM SPECTRUM (AS) GROUP
(N = 25)

TOTAL SAMPLE 
(N = 80)

(48 NT + 25 AS + 7 OTHER)

M SD RANGE M SD RANGE M SD RANGE

Age (years) 23.96 4.82 18–35 25.48 6.501 18–35 24.69 5.16 18–35

Sex at Birth (F/M/Intersex) 15/10/0 14/10/1 37/42/1

Gender (F/M/Other*) 14/10/1 13/10/2 39/35/5

Autism Quotient (AQ) 19.44 7.25 4–30 35.44 7.42 21–46 26.15 10.24 4–46

AQ Attention to detail 4.64 2.66 1–10 6.40 2.45 1–10 5.52 2.68 1–10

AQ Attention switching 4.68 1.93 2–9 8.52 1.66 3–10 6.60 2.63 2–10

AQ Social Skill 3.88 2.29 0–7 7.32 2.17 3–10 5.60 2.81 0–10

AQ Communication 3.56 2.10 0–8 8.28 1.62 4–10 5.92 3.02 0–10

AQ Imagination 3.08 1.97 0–8 4.92 2.41 1–9 4.00 2.37 0–9

Sensory Processing Quotient (SPQ) 117.76 14.23 90–159 106.33 27.94 58–162 108.99 23.85 50–162

SPQ Vision subscale 28.96 3.82 23–38 24.44 6.96 13–44 25.94 5.99 13–44

SPQ Hearing subscale 28.32 4.99 19–38 26.92 5.07 19–37 27.62 5.03 19–38

SPQ Smell subscale 18.88 4.19 11–28 19.64 6.73 9–34 19.26 5.56 9–34

SPQ Taste subscale 20.12 4.10 14–29 16.68 8.29 1–33 18.40 6.70 1 -33

SPQ Touch subscale 21.48 4.56 13–29 17.36 6.70 3–32 19.42 6.03 3–32

Beck Anxiety Score 13.68 11.60 0–55 18.72 12.68 0–44 14.50 11.67 0 -55

Beck Depression Score 16.04 13.61 0–44 11.09 9.89 0–44

Antidepressant use(Y/N) 0/25 12/13 17/63

ADHD medication use (Y/N) 0/25 6/19 8/72

Autism Diagnostic Observation Schedule 
(ADOS)

N/A 6.64 1.78 4–10 5.87 2.26 2–10

Table 1 Demographic profiles 
and scores from self-
administered psychometric 
scales.

Note: * Other Genders include –  
female to male transgender 
(1NT & 2 AS).
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Dimensional analysis pooled all 80 participants together (47 NT + 32 self-reported ASD) aligning 
them on Autism Quotient (AQ) scores. AQ scores were negatively correlated with SPQ vision scores 
[r = –0.463, p = 1.6 × 10–5] indicating greater hypersensitivities for higher AQ scores as well as 
increased anxiety [r = 0.422, p = 9.8 × 10–5] and depression [r = 0.349, p = 0.002] with AQ.

We first report our findings on group differences and then turn to the analysis of autistic traits by 
aligning all participants on a continuum using autism quotient scores.

NO GROUP DIFFERENCES IN TASK PERFORMANCE

In the practice task, a 2 × 2 × 2 ANOVA of prior means (see methods equation 2 for calculation), 
showed no group differences in their subjective prior mean [NT group mean = 0.560; AS group 
mean = 0.526; F = 0.630, p = 0.431]. A 2 × 2 × 2 ANOVA of estimation errors demonstrated no 
differences in overall accuracy [F = 1.450, p = 0.234]. This indicated that all participants regardless 
of group, had acquired the centre of the screen as the prior mean (as instructed). Furthermore, 
there were no group differences in overall task performance.

Further, for the main 2-prior task, to establish task performance, we conducted a 2 × 2 × 2 ANOVA 
for estimation errors. We observed a main effect of Prior, driven by PW>PN [M = 8.7 × 10–3, p = 
1.067 × 10–8]; a main effect of Likelihood, driven by LW>LN [ M = 0.025, p = 3.55 × 10–24] and a 
Prior*Likelihood interaction [F = 19.276, p = 6.20 × 10–5]. This indicated that the prior and likelihood 
uncertainty manipulations functioned as expected, with higher uncertainty in the prior or likelihood 
leading to more estimation errors. We found no Group interactions with Prior or Likelihood factors 
for estimation errors, indicating that the AS and NT group showed no differences in performance 
(i.e., estimation errors, See sup. Table S2 and sup Figure 4A). 

We confirmed that priors were learnt in the main task and that participants were able to 
discriminate conditions as demonstrated by the predicted sensory weights (see Figure 3C) showing 
an effect of Prior [ηp

2 = 0.416, F = 34.129, p = 4.35 × 10–7] and Likelihood [ηp
2 = 0.521, F = 53.304, p 

= 3.24 × 10–9] regardless of group whereby the sensory weight is higher for more reliable likelihood 
information and lower for more reliable priors.

Groups also showed no differences in their confidence reports for individual conditions (See 
sup. Table S1.4), but we did observe a Group*Likelihood interaction [ηp

2 = 0.160, p = 0.004]. This 
interaction was driven by the AS group showing a smaller difference [M = –2.176, SD = 6.812] than 
the NT group [M = –9.618, SD = 10.223] in their confidence reports in wide vs narrow likelihood (i.e., 
LW – LN) conditions (See Sup Figure S1).

NO SIGNIFICANT DIFFERENCE IN LIKELIHOOD RELIANCE BETWEEN GROUPS 

We first aimed to establish whether the AS group gave more weight to new (likelihood) information 
than prior information than the NT group (See Methods; Figure 3A) using data from the main 2-Prior 
Task. Contrary to the hypothesis of increased likelihood reliance in AS, as posited by the theoretical 
work of Brock (2012) and Pellicano & Burr (2012), we found evidence for no difference between the 
groups in overall likelihood reliance, (i.e., sensory weights averaged across conditions) [t = –0.325, 
BF01 = 4.524, p = 0.747; Figure 3B]. 

AS GROUP SHOWS LESS CONTEXT ADJUSTMENT IN SENSORY WEIGHTS

Looking within conditions in the 2-Prior Task, a repeated-measures ANOVA (see methods) of 
sensory weights revealed a significant Group*Prior [Effect Size ηp

2 = 0.123, p = 0.013], but no 
Group*Likelihood [ηp

2 = 0.058, p = 0.091] interaction or Group*Prior*Likelihood [ηp
2 = 0.026, p = 

0.260] interaction (see Figure 3C). Post-hoc tests revealed the Group*Prior interaction effect was 
driven by the NT group showing a larger difference in sensory weights for wide prior vs. narrow 
prior (i.e., Pw – PN), [M = 0.495, SD = 0.450], compared to the AS group [M = 0.191, SD = 0.377], who 
presented less shift in sensory weights across contexts.



Figure 3 Likelihood vs. Prior 
Reliance in the 2-Prior Task. 
A) Sensory weight (likelihood 
reliance) for a participant is 
calculated by obtaining the 
slope of the regression (orange) 
between the true centre of the 
likelihood and participant’s 
estimates of the coin position 
for each condition. Slopes 
closer to 1 (red) indicate that 
participants are more reliant on 
likelihood information (mean 
of the splashes) while slopes 
closer to zero (green) indicate 
that the participant didn’t rely 
much on likelihood information, 
suggesting that they may have 
relied on prior information 
instead. Figure shows an 
example participant. Each dot 
corresponds to the response on 
a given trial. B) Sensory weights 
per group (Left, NT- orange; 
right, AS-green) averaged 
across the four conditions. No 
group differences were found in 
likelihood reliance in the Main 
(2-Prior) Coin Task. C) Average 
sensory weights per group, 
separated by condition. The AS 
group shows reduced context 
adjustment compared to NT. 
D) Estimated subjective prior 
variances, divided per group 
and condition. No evidence was 
found for group differences 
in subjective prior variance. 
Conditions: PNLN = narrow prior 
and likelihood; PNLW = narrow 
prior, wide likelihood; PWLN = 
wide prior, narrow likelihood; 
PWLW = wide prior and likelihood.

Between-group pairwise comparisons revealed no statistically significant differences between 
groups for individual conditions (see Supp. Table S1 for statistics for each condition).  

INTACT PRIORS IN AUTISM: NO EVIDENCE FOR DIFFERENCES IN SUBJECTIVE 
PRIORS BETWEEN GROUPS

Participants’ behavioural responses on the 2-Prior Task were modelled using a Bayesian approach to 
determine the subjective prior variance (see Methods for details). When investigating prior variance, 
we did not observe any significant Main effect of Group [ηp

2 = 0.029, p = 0.250], Group*Prior [ηp
2 = 
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0.008, p = 0.545], Group*Likelihood [ηp
2 = 0.039, p = 0.176] or a Group*Prior*Likelihood interaction 

[ηp
2 = 0.078, p = 0.054] (see Figure 3D). We find no evidence for differences between groups in 

individual conditions (see Supplemental Section S1.3). 

AS GROUP SHOWS MORE VARIABILITY IN TRIAL-BY-TRIAL SENSORY WEIGHTS

We further investigated variability in sensory weight by obtaining the variance in trial-by-trial 
sensory weights (See Equation 3). We found a main effect of Group [ηp

2 = 0.084, p = 0.042] but no 
further group interactions with prior or likelihood (See Supp. Table S8). This main effect of group 
was driven by higher variability in the AS group [M = 0.049, 95% CI = 0.043 to 0.055] compared 
to the NT group [M = 0.040, 95% CI = 0.034 to 0.046]. Further, individual conditions revealed 
differences to be in PNLN, PNLW, PWLW conditions (See Figure 4B and Suppl. Table S9 for statistics). 

Figure 4 Performance in the 
2-Prior Task. A) Estimation 
Errors in the 2-Prior Task shows 
no difference in performance 
between groups by condition 
B) Variance of trial-by-trial 
sensory weights reveal a main 
effect of Group driven by higher 
variability in the AS group. (NT: 
Neurotypical – orange; AS: 
autism spectrum group -green).

THE AS GROUP SHOWED A STRONGER BIAS TO THE CENTRE OF THE SCREEN IN 
THE LIKELIHOOD ONLY TASK

A subsample of 21 AS and 24 matched-NT also completed a likelihood only manipulation task 
after the main 2-Prior Coin Task, in which the prior manipulation was removed, and participants’ 
task was to find the centre of the cloud of dots (See methods). This Likelihood Only task was 
designed to obtain an estimate of the variance of participants’ sensory observations (i.e., the 
likelihood variance), in the absence of a given prior. 

Results from this task revealed that the AS group’s estimates of the centre of the splashes was 
shifted toward the middle of the screen, as shown by significantly lower sensory weights than 
those found in the matched-NT group, for both the Narrow [Mann-Whitney U = 130.00, p = 0.006] 
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and the Wide [Mann-Whitney U = 128.00, p = 0.005] likelihood conditions (See Figure 5B). However, 
this did not manifest as a significant difference in accuracy (i.e., mean estimation error) between 
the groups in this task (see Figure 5A). This result may reflect a carryover bias in the Likelihood Only 
task from the 2-prior task. We therefore did not use estimation error variance as a measure of 
subjective likelihood variance for group differences. 

Figure 5 Likelihood Only Task 
results reveal that the AS group 
has high variability (i.e., were 
further from estimating the 
true centre of the splashes) 
but show no difference in A) 
estimation errors compared to 
the NT group for either Narrow 
or Wide likelihood variance 
conditions. B) AS group 
shows lower sensory weights 
compared to NT for Narrow 
and Wide likelihood conditions 
which may indicate a carryover 
bias from the main 2-Prior task. 
(Left, NT- orange; right, AS-
green).

NO EFFECTS OF MEDICATION ON GROUP FINDINGS

Seventeen participants in the AS group reported taking antidepressant medication and 8 
participants reported medication use for attention deficit hyperactivity disorder (ADHD). In 
contrast, none of the NT participants reported any medication use, which may be a confounding 
factor in our group analyses. We undertook a control analysis to identify whether medication 
use was a significant predictor of the variables of interest within the AS group. To that end, we 
conducted a regression analysis with variables of interest as the outcome variable. We found no 
relationship between antidepressant or ADHD medication use difference in sensory weights (PW – 
PN) (F = 0.081, p = 0.922) in the main 2-Prior Task. Further, our estimates of sensory weights for the 
Likelihood Only task showed no relationships with medication use for narrow (F = 0.625, p = 0.543) 
or wide (F = 0.431, p = 0.655) likelihood conditions. Of course, with the relatively small numbers 
of participants reporting medication use here, we cannot exclude the possibility that there was a 
subtle but undetected effect of medication on the behavioural findings.

AUTISTIC TRAITS ARE NOT CORRELATED WITH ACCURACY OR PRIOR VARIANCE 
BUT ARE NEGATIVELY CORRELATED WITH CONFIDENCE IN THE 2-PRIOR TASK 

We undertook a dimensional approach by aligning the participants on a continuum using the 
dimensions of both their Autism Quotient (AQ) scores, which quantify autistic traits, and their 
Sensory Processing Quotient (SPQ) scores, which assess sensory sensitivities. In the main 2-Prior 
task, we found no associations that survived multiple comparisons, between AQ and SPQ scores 
and likelihood reliance, subjective prior variance, or accuracy (estimation error) in the pooled 
sample (AS and NT combined, see supplements Table S10). However, despite behavioural accuracy 
measures showing no significant relationships with AQ scores, we observed a lower mean 
confidence with increased AQ scores [r = –0.339, p = 0.002, pbonf = 0.034]. An ANCOVA revealed 
within group (AS vs NT) differences in their correlations with confidence and AQ, indicating pooled 
samples should be interpreted with caution. However, further within-group analysis showed that 
neither AS group [r = –.103 p = 0.575] or NT [r = –.189, p = 0.197] were driving the correlation in 
the pooled sample. We also conducted a within-AS group correlational analysis with the ADOS 
scores (which describe symptom severity within the autism group) but found no relationship with 
likelihood reliance or subjective prior variance (See supplements Table S17).
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AUTISTIC TRAITS BUT NOT SENSORY SENSITIVITIES ARE NEGATIVELY 
ASSOCIATED WITH SUBJECTIVE LIKELIHOOD VARIANCE IN THE LIKELIHOOD 
ONLY TASK

We did not find a significant relationship between sensory weights in the Likelihood Only task 
and AQ for the narrow [r = –0.154, p = 0.188] or wide [r = –0.137, p = 0.242] likelihood conditions. 
We nonetheless excluded significant outliers by sensory weights in the Likelihood Only task (see 
methods). After excluding outliers, there was no significant relationship between sensory weights 
and AQ for the narrow [r = –0.147, p = 0.236] or wide [r = –0.140, p = 0.259] likelihood conditions. 

Estimation error (performance) showed a negative correlation with AQ only in the wide likelihood 
condition [r = –0.377, p = 0.003, pbonf = 0.012; Figure 6B]. Further, within-group analysis revealed the 
NT participants to show a negative correlation of AQ with estimation error [r = –0.363, p = 0.007, 
pbonf = 0.028] in the wide likelihood condition, but not within the AS group [r = –0.158, p = 0.560]. 

Figure 6 Autistic trait 
behaviour in the Likelihood 
Only Task. The Likelihood 
Only Task reveals negative 
correlations in the Wide 
Likelihood Condition between 
autism quotient (AQ) scores 
and A) subjective likelihood 
variance and B) Estimation 
error. An AQ subscale analysis 
revealed Attention to Detail to 
be negatively correlated with 
C) subjective likelihood variance 
and D) Estimation error.

We found a significant negative association [r = –0.326, p = 0.007, pbonf = 0.028; Figure 6A] between 
AQ scores and wide subjective likelihood variance (i.e., estimation error variance; See methods), 
but not with narrow subjective likelihood variance [r = 0.062, p = 0.618] in the pooled sample. This 
suggests that as autistic traits increase the precision of sensory observations increase which is 
apparent only in the wide likelihood condition.

Further, to check if groups could be pooled, using an ANCOVA we tested whether the AQ showed 
group (NT vs AS) differences in slopes (correlation coefficient) with wide likelihood variance on the 
Likelihood Only task [F = 3.107, p = 0.033; table S12]. This indicated that NT and AS groups showed 
differences in their correlations with AQ and could not be pooled. Within-group associations with 
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AQ and subjective likelihood variance did not approach significance when corrected for multiple 
comparisons (See Supplements Table S11).

Further an AQ subscale analysis found that “Attention to Detail” negatively correlated with 
subjective likelihood variance [r = –0.375, p = 0.002, pbonf = 0.008; Figure 6C] and estimation error [r 
= –0.359, p = 0.003, pbonf = 0.012; Figure 6D] in the Wide Likelihood condition only in the Likelihood 
Only Task (Supplements Table S14). Once again, an ANCOVA revealed that within group correlations 
are significantly different between AS and NT for both estimation error [F = 3.965, p = 0.012] and 
likelihood variance [F = 3.337, p = 0.025] in the Wide Likelihood condition, suggesting caution in 
drawing conclusions on the pooled sample. Within-group analysis revealed the NT participants to 
show a negative correlation of Attention to Detail with subjective likelihood variance [r = –0.329, 
p = 0.026] and estimation error [r = –0.312, p = 0.035] in the wide likelihood condition. We did not 
observe significant correlations within the AS group for subjective likelihood variance [r = –0.194, p 
= 0.471] or estimation error [r = –0.184, p = 0.496].

DISCUSSION
In this study, we aimed to test whether autistic individuals showed greater likelihood reliance 
than NT individuals, consistent with current models of autistic perception, as well as to investigate 
whether this reliance aligned on a continuum of autistic traits and sensory sensitivities. To 
our knowledge, previous studies have not directly compared the relative weighting of sensory 
(likelihood) and contextual (prior) information in AS. The hypo-prior (Pellicano & Burr, 2012) and 
precise likelihood models (Brock, 2012) postulate an increased likelihood reliance. While our AS 
group did show significantly higher hypersensitivity (i.e., lower SPQ scores) than the NT group, 
contrary to both models, we found no difference in overall weighting of likelihood information 
relative to prior in the AS group (vs. NT).  However, greater variability in trial-by-trial sensory weights 
in the autistic group suggests underlying difficulties in learning context. These findings are directly 
in line with a study that showed increased behavioural variability, but intact priors and integration 
in a visual task in ASD (Noel et al, 2020). In addition, we found that subjective likelihood variance 
decreased as autistic trait increased, which lends support to Brock (2012) precise likelihood model.

While task performance did not show any differences between groups, modelling of likelihood 
reliance (i.e., sensory weights) revealed a poorer adjustment across contexts in the AS group. 
Specifically, the AS group showed lower sensory weights compared to the NT group under a high 
uncertainty (Wide Prior) context. This suggests a deficit in precision updating, and a higher reliance 
on prior (relative to likelihood) in the AS group when uncertainty is high. While Brock and Pellicano 
models are unable to explain a higher reliance on prior information, an alternate model, the 
HIPPEA model (Van de Cruys et al, 2014) predicts higher prior precision (which in turn may lead to 
greater reliance on prior). The high, inflexible precision of prediction errors (HIPPEA) model argues 
that prediction error weighting is less flexibly adjusted in individuals with AS, particularly across 
different contexts (Van de Cruys et al, 2014). The HIPPEA model can explain instances in which both 
likelihood and prior variance can be of increased precision which may be a result of prediction error 
weighting. This deficit in prediction error weighting can explain some key diagnostic symptoms of 
ASD, such as altered perceptual processing and resistance to change, as well as social differences 
relative to neurotypicals.  

The HIPPEA model also makes specific predictions about alterations in prediction errors. Further 
research employing a paradigm specifically designed to investigate prediction errors would be 
needed to understand if the HIPPEA model may explain this reduction in context updating in AS. 
Reductions in contextual adjustment using social priors, such as imitating motor movements in 
children (Amoruso et al, 2019) and adults (Chambon et al, 2017) on the autism spectrum, suggest 
that our findings of alterations in contextual adjustment may extend to more complex perceptual 
processes and underpin core diagnostic symptoms of an ASD. However, Mottron (2019);(2014), 
cautions against generalizing descriptive findings, particularly as autistic perception can be both 
highly domain- (i.e. visual/auditory) and individual-specific. 
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In the ‘Likelihood Only’ task, the AS group showed greater reliance on the prior learnt in the 2-prior 
task (indicated by lower sensory weights than the NT group). This suggests over-reliance on a pre-
learned prior in the AS group, or prior rigidity, when switching contexts (and tasks) that suggest  
“insistence on sameness” behaviours typically seen in AS. Hypersensitivities have been shown to 
have a mediating effect on insistence on sameness in autistic children (Black et al, 2017; Lidstone 
et al, 2014; Wigham et al, 2015), indicating that increased hypersensitivities relate to increased 
anxiety, which may in turn manifest in an insistence on sameness.  Thus, in the future, it would 
be beneficial to measure other dimensions of restricted and repetitive behaviours, and also to 
investigate sensory learning in autism with low vs high anxiety groups to understand the relative 
contributions of these factors in perceptual decision-making.  

While we did not find group differences in accuracy or confidence measures in the 2-Prior Task, 
we did find a negative correlation between autism traits and confidence reports. Retrospective 
confidence refers to an ability to judge the accuracy of one’s decisions (Mamassian, 2016). 
Bayesian theories of confidence judgements posit that they reflect the subjective probability that 
a decision is correct given the evidence (Pouget et al, 2016). However, we did not observe this 
expected relationship of higher accuracy and confidence in our task. Other non-Bayesian accounts 
of confidence judgements suggest that confidence reports reflect the subjective probability that 
an observer made the best possible decision (Adler & Ma, 2018; Li & Ma, 2020). Furthermore, Song 
et al (2011), finds that confidence reporting was separable from objective performance across 
tasks. It is unclear from our task if we are observing specific disruptions in metacognition as autism 
traits increase, or simply a general tendency to be less confident in sensorimotor decisions; for 
which we would need a secondary task to compare confidence reports and behaviour. 

We further aimed to empirically disentangle the current Bayesian theories for perceptual 
alterations in autism that predict either increased precision in sensory information (likelihood) 
or wider priors. When aligned on a continuum, we observed negative correlations with AQ and 
likelihood variance as well as estimation error (but not with sensory weights), indicating that 
not only did sensory precision increase with autistic traits but so did accuracy albeit in the wide 
likelihood condition only. This observation of an association between likelihood variance and AQ 
in wide likelihood condition indicates the need for investigating autistic perception under varying 
degrees of uncertainty in future studies. Nonetheless, a lack of a significant correlation between 
AQ and subjective prior variance, is in line with previous findings in neurotypicals with autistic 
traits (Karvelis et al, 2018), providing support for the Precise Likelihood Model (Brock, 2012) when 
aligned on a continuum. We further found that this relationship was driven by the AQ subscale – 
‘Attention to Detail’, which is a common perceptual enhancement in autism, often identified as a 
cognitive style (Baron-Cohen et al, 2009). However, the presence of a diagnosis confounds these 
findings, and we found the relationship between precision and AQ, attention to detail to be driven 
by neurotypical participants. A larger sample of autistic adults would be necessary to understand 
if increased precision can explain increased attention to detail in autistic adults.

Our study has several limitations. In this study we assumed that participants had acquired a prior 
by the end of the Main 2-Prior Task. While we demonstrate that participants showed effects of 
prior and likelihood in their sensory weights it may be possible that some participants had not 
yet fully learnt the experimental variance. Additionally, our version of the Coin Task had short 
blocks with multiple switches between throwers (priors), compared to Vilares (2012) et al., which 
had longer blocks but less block repetitions (just two block repetitions per thrower). This increases 
the difficulty of the task and may reduce sensitivity to detect differences in behaviour and prior 
variance between groups.  In the Likelihood Only Task, we observed a bias towards the mean of 
the prior in the AS group, which did not allow us to make inferences on the likelihood variance. 
Future studies would benefit from starting with the Likelihood Only Task or counterbalancing the 
tasks across participants. We also did not model motor response noise in this task (i.e., where the 
participants put the bar may be different to where they intended it to be), which may account for 
observed group differences particularly within conditions.

Further, the autism spectrum is heterogeneous, and our AS sample was limited to participants who 
were able to read and provide consent on their own. This inevitably excluded participants on the 
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autism spectrum who are non-verbal or have intellectual disabilities. This limits the generalizability 
of our findings as evidence for a global theory of autistic perception. An additional consideration 
is that we have not investigated cognitive abilities such as verbal reasoning in participants, which 
may result in group differences due to differences in understanding task requirements. Future 
studies may benefit from accounting for cognitive abilities. It is also important to note that more 
than 50% of our AS group reported taking antidepressant medication and 25% reported ADHD 
medication use, which is a significant confounding factor in group findings. Moreover, while we 
hypothesized that visual sensory sensitivities as measured by SPQ scores would be associated 
with behavioural measures on the coin task over autistic trait scores, we did not find evidence for 
this. Thus, it remains unclear if narrow priors and narrow likelihood can explain hypersensitivities. 
In addition, our findings provide empirical evidence for increased precision in likelihood variance, 
although a larger sample would be needed to confirm these findings and understand the relative 
contributions of dimensional aspects of autism. It may well be that the heterogeneous nature 
of the autism spectrum itself explains the seemingly contradictory findings that take turns in 
supporting these alternative models in literature. 

In conclusion, our findings provide evidence for intact priors in sensory perception in individuals 
on the autism spectrum and for the contextual nature of autistic perception that may explain 
behavioural differences in uncertain worlds.  
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