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ABSTRACT
Affective bias – a propensity to focus on negative information at the expense of positive 
information – is a core feature of many mental health problems. However, it can be 
caused by wide range of possible underlying cognitive mechanisms. Here we illustrate 
this by focusing on one particular behavioural signature of affective bias – increased 
tendency of anxious/depressed individuals to predict lower rewards – in the context 
of the Signal Detection Theory (SDT) modelling framework. Specifically, we show how 
to apply this framework to measure affective bias and compare it to the behaviour of 
an optimal observer. We also show how to extend the framework to make predictions 
about bias when the individual holds incorrect assumptions about the decision context. 
Building on this theoretical foundation, we propose five experiments to test five 
hypothetical sources of this affective bias: beliefs about prior probabilities, beliefs about 
performance, subjective value of reward, learning differences, and need for accuracy 
differences. We argue that greater precision about the mechanisms driving affective 
bias may eventually enable us to better understand the mechanisms underlying mood 
and anxiety disorders.

AUTHOR SUMMARY
We propose applying the Signal Detection Theory framework to understanding the 
mechanisms behind affective bias in individuals with mood and anxiety disorders. Based 
on previous explanations of perceptual bias in healthy human observers, we generate five 
testable hypotheses about the causes of affective bias in clinical populations.
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INTRODUCTION
Affective bias is a clinically-relevant behavioural bias in individuals with mood and anxiety 
disorders. The bias, usually presenting a diminished response towards reward or away from 
punishment, can even be measured with simple perceptual-discrimination tasks in the laboratory 
(e.g., Aylward, Hales, Robinson, & Robinson, 2019; Pizzagalli, Jahn, & O’Shea, 2005). At the same 
time, sophisticated methods have been developed to understand behaviour in perceptual tasks, 
namely Signal Detection Theory (SDT) (Green & Swets, 1966), however clinical studies have yet 
to fully leverage the power of this framework. Here we present a opinion paper which aims to 
provide the tools and understanding for researchers studying psychopathology to implement SDT 
to its full potential and suggest a few experiments that we consider informative with respect to 
affective bias.

We argue that there are two main advantages that SDT has to offer. The first is in the measurement 
process, as SDT can isolate measures of bias and perceptual sensitivity which jointly affect how 
the participant responds in the task. Isolating which specific measure of bias correlates with core 
symptoms (e.g., depression symptom scores) enables a more mechanistic understanding of the 
causes of these symptoms. The second advantage is being able to model the ideal observer, a 
theoretical benchmark of optimal performance. SDT is able to incorporate information about the 
decision scenario, such as reward contingencies, to determine the bias that would lead to the most 
rewards in the long run. This is particularly useful because any distortions the individual has about 
the decision scenario (e.g., the perceived value of rewards) can also be converted into predictions 
about bias by exchanging the true decision context with the perceived decision context in the 
SDT model. Thus, with SDT, it is simple to compare measured bias, ideal bias, and predicted bias 
on a per-participant basis. Often when ‘affective bias’ is evoked for mood and anxiety disorders it 
is done so in a theoretically vague manner. Being more precise about the underlying causes and 
manifestations of bias enables us to better understand the underlying pathology. Of course, there 
are many other mood and anxiety symptoms that are better captured by different models, but 
SDT is uniquely situated to explain biases on simple affective decision making tasks.

In this paper we first provide a broad summary of affective bias and the SDT framework aimed 
at individuals unfamiliar with this approach. Then we relate this to previous work on affective 
bias, showing how SDT and optimality considerations can be applied. Finally, we propose future 
directions that leverage the predictive power of SDT to test whether any of the various documented 
sources of bias in healthy populations (Rahnev & Denison, 2018) are predictive of affective bias. 
Together, increasing measurement quality and better understanding the cause for the bias have 
the potential to improve the understanding of the mechanisms underpinning affective bias.

BACKGROUND
AFFECTIVE BIAS

Affective bias is a broad term that encompasses cognitive or behavioural bias towards (or away 
from) rewards or punishments. Such bias forms an important part of the aetiology of a wide range 
of mental health problems (Roiser, Elliott, & Sahakian, 2011). Mood and anxiety disorders, for 
instance, are thought to involve substantial ‘negative’ affective biases, whereby an individual’s 
cognitive processes (e.g. perception, attention or learning) are biased towards punishing stimuli 
and away from rewarding stimuli (Halahakoon et al., 2020; Pizzagalli et al., 2005; Robinson & 
Chase, 2017). This bias promotes negative mood (e.g. if you are biased to learn and remember 
negative things that happen to you, it makes your overall mood more negative), which in turn 
further promotes the underlying negative bias, and can eventually lead to a pathological state 
(Beck, 1964). These biases therefore form a key part of the diagnosis of mood disorders; where 
bias away from reward, for example, is encompassed within the diagnostic criterion of “diminished 
interest or pleasure” (American Psychiatric Association, 2013). Indeed individuals at risk of clinical 
diagnosis demonstrate elevated negative biases (Rock, Roiser, Riedel, & Blackwell, 2014; Roiser et 
al., 2011), and longitudinal work suggests that negative biases precede the onset of subsequent 
diagnoses (Kilford et al., 2015), which suggests a causal role for negative bias in driving clinical 
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vulnerability. Whilst the presence and importance of such biases in mental health has been 
established for many decades (Beck, 1964), their underlying causes and mechanisms are far from 
clear (Robinson & Chase, 2017).

OPTIMAL DECISION MAKING

One way to understand bias is to frame it in the context of optimal decision making. Optimal 
decision making involves the selection of the best possible choice taking into account the 
choice context (Berger, 1980). Choice contexts typically have two salient features that need to 
be considered: the prior probability of possible states of the world and the rewards or losses for 
selecting or not selecting each choice, often referred to as payoffs. For example, when a doctor 
is deciding on a cancer diagnosis for a patient, they may consider other aspects of the patient’s 
history to gauge the prior probability of developing cancer (e.g., smoker/non-smoker) in addition 
to the medical results they have just obtained. They should also consider the payoffs of different 
choice and outcome pairings. For the doctor, these could be: correctly detecting cancer early is 
good for survival chances but incorrectly diagnosing cancer is stressful and costly for the patient, 
whereas correctly identifying there is no cancer relieves stress but incorrectly telling the patient 
they are cancer-free can be deadly.

Once the priors and payoffs are known, the best possible choice can be made by selecting the 
choice alternative that maximises the expected reward. Many real-world cases have complex 
rewards and losses that are difficult to quantify, like in our medical example, but in economic 
or laboratory settings, choice outcomes can be expressed in terms monetary or points-based 
payoffs. For example, consider a lottery game with two choices, A and B, where selecting A gives 
a 25% chance of winning a reward of 4 pts versus selecting B which gives a 75% probability 
of winning 2 pts. The expected gain of selecting lottery A is 1 pt (0.25 × 4) and for B is 1.5 pts 
(0.75 × 2). Thus, the optimal decision would be to select lottery B because 1.5 pts is greater 
than 1 pt. In our medical scenario, we cannot usually make such a precise calculation, but 
weighing up the relative risk of death (extremely high cost) versus causing some mental and 
financial stress (lower cost), the doctor might err towards a positive diagnosis in an ambiguous 
case. Optimality can be considered in numerous modelling frameworks, including SDT which we 
make use of here.

THE SIGNAL DETECTION THEORY FRAMEWORK

Signal Detection Theory (SDT) is a well established framework for modelling perceptual decision 
making (Green & Swets, 1966). Perceptual decision making is based on noisy information reaching 
our senses that is then stochastically represented in the brain. Both of these factors add an 
additional layer of uncertainty in the decision process. Returning to our medical example of a 
doctor deciding on a cancer diagnosis, the information the doctor receives can be corrupted by 
noise in various ways, such as the visual blur in an x-ray image or neuronal noise involved in the 
sense of touch when inspecting a lump. The SDT framework is flexible in that can be applied to 
most scenarios of repeated perceptual discrimination or categorisation, such as reporting whether 
stimuli have rightward motion or leftward motion or categorisation in the laboratory, such as, or 
a series of cancer/not-cancer diagnoses in the hospital. Furthermore, SDT can be both descriptive, 
when applied in the context of empirical observations (e.g., quantifying how two doctors differ 
in how readily they diagnose cancer), or prescriptive, in the sense that it can describe what the 
optimal decision is for a given scenario.

A feature of the SDT approach, and perhaps its greatest strength, is its ability to dissociate the 
separate effects of perceptual sensitivity and perceptual bias on the decision making process. That 
is, the degree of noise in the sensory evidence vs. the observer’s propensity to choose one choice 
alternative over the other. Once the bias measure, the decision criterion, has been isolated, it can 
then be easily compared to the optimal decision criterion as well as the bias of other observers, 
taking into account any differences in sensitivity, as we will demonstrate next. Thus, the SDT 
framework is a powerful tool for measuring and contextualising behavioural biases.
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APPLYING THE SDT MODEL

The standard SDT model describes the decision-making process for when one of two potential 
sensory stimuli, A and B, is presented to an observer and they are asked to report which they 
perceived. The presentation of stimulus A does not produce the same sensory response in the 
observer each time it is shown, due to the various sources of noise corrupting the signal. The same 
is true for B. Instead, we refer to the noisy measurement of the stimulus in the observer’s brain as 
x, the value of which is unobserveable to the experimenter. An assumption of the standard SDT 
model is that the sensory noise affecting A and B is Gaussian, with the conditional measurement 
distributions p(x|A) and p(x|B) modelled as two equal-variance Gaussian distributions (see 
Figure 1A). These distributions represent the values of x one can expect to observe for repeated 
presentations of identical A and identical B.

The perceptual sensitivity of the observer is reflected in the separation of these distributions in 
units of SD,

 
,B Ad

 

   (1)

and is referred to as d′ (“dee-prime”). A common modelling choice, which we adopted for this 
paper, is to rescale the decision axis by a factor of 1/σ so the variance of p(x|A) and p(x|B) is 1. This 
allows d′ to be read directly as the distance between the distributions because the re-scaling takes 
care of the denominator in Eq. 1. Consequently, when sensory noise is higher, the measurement 
distributions are closer together, and perceptual sensitivity (d′) is lower. This is intuitive: from the 
observer’s perspective, they must infer if their measurement x came from the p(x|A) or the p(x|B) 
distribution, which are more easy to confuse if the distributions are closer together. If the decision 
axis is unscaled the confusion resulting from increasing noise can be thought of in terms of simply 
a greater overlap in the two conditional distributions.

To convert the noisy measurement x into a categorical response “A” or “B”, the observer must 
place a decision criterion, c. This criterion divides the decision space into two regions: values of x 
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Figure 1 Illustration of the 
Signal Detection Theory (SDT) 
framework. A) The observer 
makes a measurement, x, of 
the stimulus, either stimulus A 
or stimulus B. The probability of 
a measurement, conditioned 
on the stimulus, is assumed 
to be Gaussian distributed 
due to the effect of sensory 
noise. The observer selects 
a decision criterion, c, that 
provides a mapping from x 
to a response (e.g., say “A”). 
Perceptual sensitivity, d′, is 
reflected in the separation 
of the curves. B) Each pair 
of d′ and c predict a unique 
combination of Hit and False 
Alarm rates. Curves reflect all 
the possible Hit rate and False 
Alarm rate combinations for a 
given perceptual sensitivity (e.g., 
d′ = 1). Two example criterion 
placements (green and gold) 
are shown on the curves and 
the SDT model insets. The 
green criterion setting leads 
to more Hits and False alarms 
(shaded regions) compared 
to the gold criterion setting. 
C) When priors are not equal 
for the two choice alternatives, 
the optimal criterion, copt, is no 
longer at the neutral location 
centred between the two 
measurement distributions. 
As shown, stimulus A is more 
probable than stimulus B, 
causing a rightward shift in 
copt. Consequently, stronger 
evidence of B is needed to 
report “B”. D) Similarly for 
unequal payoffs. Correctly 
guessing A receives 2 units 
of reward, whereas correctly 
guessing B receives 4 units. 
This shifts copt leftward so 
that stronger evidence of A 
is needed to report poorly 
rewarded “A”. In an unequal 
reward context, affective bias 
is an increased preference 
to report the low-reward 
option (here “A”). This can be 
modelled as a shift in c towards 
the high-reward distribution. 
An example of a criterion 
influenced by affective bias is 
shown by the dashed line.
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that lead to “A” responses and those that lead to “B” responses. The criterion can be placed at any 
point along the decision axis, and is independent with respect to the perceptual sensitivity. The 
insets in Figure 1B shows two examples of criterion placement for an observer with a d′ = 1, and 
the consequent change in response probabilities. By shifting the criterion to the left, the observer 
is more likely to respond “B” correctly for B stimuli, but also incorrectly “B” for A stimuli. In fact, it 
is these two response probabilities, referred to as “Hits” and “False Alarms” respectively, that are 
used to calculate the observer’s empirical d′ and c from a series of judgements. We calculate

 (HR) (FAR),d z z    (2)

and

 

1
[ (HR) (FAR)],

2
c z z    (3)

where HR is the hit rate, FAR is the false alarm rate, and z is the normal inverse function. The curves 
in Figure 1B, referred to as receiver operating characteristic curves, show the resulting unique pairs 
of HR and FAR for different combinations of d′ and c.

Finally, the decision criterion can also be converted to the more general β representation, which is 
independent of perceptual sensitivity, through the following relationship:

 ln cd   (4)

for a fairer comparison across observers or tasks where d′ may differ. Either ln β can be compared, 
or the equivalent criterion for a d′ can be compared by solving for c.

OPTIMALITY IN SDT

For a given perceptual sensitivity, there is only one location of the decision criterion that is optimal 
to maximise rewards. This theoretical benchmark is often referred to as the ideal observer, who 
makes the best decision possible given the noisy sensory input (Green & Swets, 1966; Tanner & 
Birdsall, 1958). The optimal criterion, copt, depends on both the prior probability of A and B as well 
as payoff structure of the environment (see Figure 1C-D):
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P(A) and P(B) are the prior probabilities of each stimulus. The outcomes for four possible stimulus-
response pairs have the associated payoff Vr,s for responding r to stimulus s (rewards are positive; 
losses negative). If one alternative is more probable or is rewarded more highly, the ideal observer 
will shift their criterion from the neutral position (cneu = 0) so more responses will be of that 
category (see Figure 1C-D). This is equivalent to requiring less sensory information consistent with 
that category to select it. When both priors and payoffs are asymmetric, then their effects on the 
optimal criterion are additive (Stevenson, Busemeyer, & Naylor, 1990).

Biases in perceptual decision making can be quantified by comparing where the observer chose 
to place their criterion relative to the optimal criterion, in a manner that takes into account the 
perceptual sensitivity of the observer. For example, one way a ‘negative’ affective bias might 
emerge is by moving the criterion towards the highly rewarded option relative to the optimal (e.g. 
a criterion rightward of copt in Figure 1D), leading the individual to choose the low-reward option 
more frequently than they should.

Any deviation from the optimal criterion is classified as suboptimal decision making, and 
conservatism is the term used to specifically refer to biases where c is placed between copt and 
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cneu at 0 (Green & Swets, 1966). For example, the affective bias criterion in Figure 1D is an instance 
of conservatism. In fact, it is common to find that normal healthy observers are conservative in 
criterion placement (Ackermann & Landy, 2015; Ulehla, 1966), and a wide range of explanations 
for the conservatism have been proposed (Rahnev & Denison, 2018). It is for this reason we suggest 
investigating whether these potential sources of suboptimality are predictive of affective bias, 
given that they share the same behavioural signature. We detail these sources of suboptimality 
and our proposed tests to link them to affective bias in the Future Directions section.

INTERIM SUMMARY

The SDT framework allows researchers to isolate and quantify the perceptual sensitivity and 
perceptual bias of an observer and directly compare choice behaviour to optimal decision-making. 
As affective bias can manifest as a suboptimal propensity to choose the low reward outcome, as 
shown in the following examples from previous clinical studies, we propose that the SDT framework 
is ideal for quantifying affective bias in perceptual tasks and comparing amongst observers with 
potentially different perceptual capabilities. Furthermore, existing hypotheses about conservative 
criterion placement could be leveraged to investigate the source of affective bias in decision 
making in future research.

USING SDT TO UNDERSTAND AFFECTIVE BIAS
In this section we review two approaches that have been used to measure affective bias with 
perceptual tasks. The first is a tone-discrimination task of Aylward, Hales, et al. (2019), which we 
re-analyse in the SDT framework. The second is a variant on the standard signal-detection task 
that uses a probabilistic reinforcement schedule. Following the SDT principles we outlined above, 
we show how to investigate optimality in both scenarios.

TONE DISCRIMINATION TASK

To illustrate affective bias in the context of optimal decision-making using SDT, we consider the 
response of human participants in the tone-discrimination task of Aylward, Hales, et al. (2019). 
This study recruited participants that were either experiencing clinically significant low-mood 
and/or anxiety symptoms or were asymptomatic controls. They discriminated between a high 
tone (1 kHz), which was highly rewarded when correctly identified, and a low tone (0.5 kHz), that 
yielded four times less reward (note that stimulus/outcome randomisation was added in later 
versions of the task; Daniel-Watanabe, McLaughlin, Gormley, & Robinson, 2020). Occasionally, an 
ambiguous intermediate (0.75 kHz) tone was played and was randomly treated as a low or high 
tone for scoring purposes including the magnitude of reward (i.e., half the trials a low-tone response 
was required and furnished the small reward value, and the other trials a high-tone response 
was required and was rewarded well). Figure 2A shows the SDT diagram for this experiment, with 
three distributions for each of the three possible tones. Participants had overall high discrimination 
performance between low and high tones, reflecting high perceptual sensitivity. The mean d′ for 
the control and anxiety groups were 3.6 and 3.5 respectively. Using Eq. 4 to compute the equivalent 
criteria for d′ = 3.5, the average criterion was –0.13 for the control group and 0.05 for the anxiety 
group (see Figure 2A), both of which are closer to neutral location at 0 than the optimal at –0.4.

To maximise reward, the participant should be biased towards responding “high tone” because 
it is more highly rewarded. This can be seen in the criterion (dashed line) depicted in Figure 2A, 
which is shifted leftward from the neutral position at 0. The bias should be most the evident for 
the ambiguous trials, where the proportion of “high-tone” to “low-tone” responses is a good 
indicator of criterion placement. The dashed lines in Figure 2B show the expected proportion of 
“high-tone” judgements in the ambiguous condition for ideal observers with several different 
levels of perceptual sensitivity. The optimal criterion is affected by sensitivity (see Eq. 1): the higher 
the sensitivity, the more the observer should trust the sensory measurement and consequently 
lowering the bias from reward. Yet, even for extremely high perceptual sensitivity, it is still optimal 
to have a bias for the more rewarded stimulus.



Participants in this task, however, showed a wide range of biases when presented with the 
ambiguous stimulus. On average, the control group responded “high tone” more often than the 
anxiety group. But many of them, as well as, critically, more than half of the anxiety group, showed 
a preference for selecting the low-rewarded “low-tone” option, interpreted as an affective bias. 
This can be seen in the average placement of the criterion by each group (green and gold lines in 
Figure 2), with the anxiety group placing their criterion further from the optimal location than the 
control group. We also note that using a log-space representation, typical for auditory experiments 
of tone-frequency discrimination (to match the encoding characteristics of the cochlea), does not 
change the interpretation of the results and in fact predicts overall higher proportions of “high-
tone” responses.

Despite being able to apply SDT to re-evaluate this previous study, we note that the design of 
this task (optimised for translational use) is not ideal for using the SDT method. First, the use of 
three stimuli, with two being obvious and the other ambiguous, is not necessary. To measure 
d′ and criterion, only two stimuli are necessary, as illustrated by the graphs in Figure 1. Adding 
a third stimulus makes the fitting the SDT model more complex, particularly if it has a random 
reward contingency. Additionally, when participants have very high levels of performance as with 
this example task, the quality of the d′ and criterion measurements is reduced. Trials in which 
the participant selects the wrong option are very important for fitting the SDT model, and wrong 
answers occur less frequently when the task is easy. The optimal criterion is also much closer 
to neutral when d′ is large, which could lead to smaller differences in the criterion between the 
clinical and control groups (e.g., the criterion difference in Figure 2A). As such, we recommend 
using tasks with two stimuli that are somewhat difficult to tell apart (e.g., d′ ≈ 1) to optimise the 
task for the SDT approach. In summary, while this example task shows how SDT may be applied, 
it also highlights that experiment design is an important factor to ensure good measures of 
sensitivity and bias, as well as maximising the opportunity to observe differences between clinical 
and healthy populations.

PROBABILISTIC REWARD TASKS

A series of clinical studies (e.g., Der-Avakian, D’Souza, Pizzagalli, & Markou, 2013; Pizzagalli, Iosifescu, 
Hallett, Ratner, & Fava, 2008; Pizzagalli et al., 2005), have employed a set of perceptual tasks called 
Probabilistic Reward Tasks (PRTs) (McCarthy & Davidson, 1979) with SDT measures. PRTs are specifically 
adapted for reinforcement learning by varying only the reinforcement schedule probabilistically to 
induce a preference for reporting one stimulus over the other (i.e., priors and payoffs are the same 
for the two stimuli). For example, rewards are only given for a subset of correct trials, and they are 
distributed unevenly for correct A responses versus correct B responses. In contrast, tasks using the 
standard signal-detection theory approach like we have described, provide reward deterministically 
for every response and vary the value of reward to induce the response bias. A major finding using 
PRTs is that the degree of bias towards the more frequently reward stimulus is reduced with elevated 
depressive symptoms (i.e., affective bias Pizzagalli et al., 2008, 2005).

Figure 2 The tone-
discrimination task of 
Aylward, Hales, et al. (2019). 
A) Participants reported if they 
heard the low-frequency tone 
(red) or the high-frequency tone 
(blue). The reward for correctly 
guessing the high-frequency 
tone was four times larger than 
for the low-frequency tone. 
On some trials, an ambiguous 
tone (purple) was played and 
was rewarded randomly. The 
graph illustrates the SDT model 
with the expected probability 
distributions of the decision 
variable for each of the tones. 
Example shown for an observer 
with a perceptual sensitivity 
of d′ = 3.5 (i.e., the sensitivity 
of the average anxiety-group 
participant). The optimal 
decision boundary (dashed) 
provides the decision rule that 
maximises expected reward: 
choose “low tone” if the 
decision variable is lower than 
this value, and “high tone” if it is 
above. Critically, this boundary 
does not align with the mid-
point between the red and 
blue distributions (peak of the 
purple distribution) because 
it is optimal to have a bias 
for responding with the more 
highly rewarded “high tone”. 
Average criterion for control 
group (green) and anxiety 
group (gold) are also shown, 
demonstrating a conservative 
shift away from optimal, and 
an even greater shift for the 
clinical group interpreted as 
affective bias. B) Boxplots of 
the empirical distributions of 
the proportion of “high-tone” 
judgements for the ambiguous 
stimulus, split by test population. 
The lower proportion of high-
tone responses of the anxiety 
group is the affective bias 
effect (p = 0.003, BF10 = 12.51; 
Aylward, Hales, et al., 2019). 
Horizontal dashed lines indicate 
the expected proportion of 
responses for the ideal observer 
who uses the optimal decision 
boundary. The expected 
proportions are shown for 
several perceptual sensitivities 
ranging from no sensitivity  
(d′ = 0) to near-perfect 
sensitivity (d′ = 4).
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Unlike in the Aylward, Hales, et al. (2019) study above, the researchers using the PRT separate out 
the individual components of sensitivity and bias metrics functionally similar to the d′ and c values 
defined here. However, the approach taken with these PRTs fall short of the approach proposed 
here in that it does not consider optimality. To see this, we can rephrase Eq. 6 for a probabilistic 
reinforcement schedule as follows (ignoring the specific response and feedback history):

 

, ,

, ,

( )
( )

A A A A B A
opt

B B B B A B

R V VP A R
P B R V V R




 
  (7)

The terms RA is the probability of being rewarded for correctly identifying stimulus A, determined 
by the reinforcement schedule (e.g., 30/50 A’s rewarded: RA = 0.6), and similarly RB for stimulus 
B. The equation simplifies the prior odds ratio because it is typically 1, the value of making an 
incorrect choice because it is typically 0, and the value of correct choice is dropped because equal 
reward values are typically used (VA,A = VB,B).

Following this logic, the participant’s bias in a PRT should stabilise after a sufficient learning period 
and the degree of bias considered optimal should vary according to the perceptual sensitivity 
of the participant and the reinforcement schedule. Yet, to our knowledge, optimality has not 
been considered in PRT studies of affective bias. However, any of the recommended experiments 
proposed below could be implemented with the standard signal-detection task or a PRT. For 
investigating optimality, we would recommend using the standard version and giving participants 
sufficient training in the task, to reduce complexity and reduce effects of the reinforcement history 
on behaviour. For investigating learning, we would recommend the PRT task (and for further 
reading on our thoughts about the role of reinforcement learning in mood and anxiety disorders 
please see Aylward, Valton, et al., 2019; Mkrtchian, Aylward, Dayan, Roiser, & Robinson, 2017; 
Robinson & Chase, 2017).

DIRECTIONS FOR FUTURE RESEARCH
Affective biases have been long known to play a critical role in promoting and maintaining 
core symptoms of mental ill health. While biases in general are not unusual in perceptual tasks 
(Ackermann & Landy, 2015; Rahnev & Denison, 2018; Ulehla, 1966), investigating the source of 
the bias responsible for divergent behaviour between clinical and healthy populations could lead 
to a more precise understanding of the underlying cognitive processes maintaining affective bias. 
Criterion biases can be a behavioural signature of one or more processes influencing the decision 
making process, generally related to how the individual subjectively experiences the choice 
context or their own behaviour. This is because correctly calculating the optimal criterion requires 
three pieces of knowledge: the prior probabilities of each stimulus, the payoff structure of the 
environment, and perceptual sensitivity of the observer. If the observer is incorrect in their beliefs 
for one or more of these components, then they may set their criterion suboptimally. As such, 
narrowing down which of these causes drives the increased bias in mood and anxiety disorders can 
provide us with more precise targets for treatment intervention. In this next section we suggest 
a number of future directions to clarify the underlying cause of biased decision making behind 
affective bias from a SDT perspective. We take the approach of using secondary measures to probe 
how the individual perceives the choice context or their own performance to build a predictive 
participant-specific SDT models. We aim to find results in these secondary measures that predict 
greater bias and match well with the choice behaviour of the participants.

1. BELIEFS ABOUT PRIOR PROBABILITIES

One compelling hypothesis for affective bias in perceptual tasks is the incorrect beliefs about prior 
probabilities. One of the key clinical features of depression and anxiety is a belief that bad things 
are more likely to happen than good things. This is the basis, for example, of negative cognitive 
schemata that are targeted by cognitive behavioural therapy (Beck, 1964). If the individual 
believes that low-reward stimuli are presented more often than the high reward stimuli (due to 
their negative schemata or a focus towards remembering low-reward events and forgetting high-
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reward events), then it is rational to shift the decision criterion so as to select the low-reward 
stimulus more often. As illustrated in Figure 3A-B, this bias can offset the optimal shift due to 
the payoff structure (i.e., move the criterion back towards the neutral location), or, in the case of 
extreme over-estimation of the low-reward stimulus probability, reverse the bias entirely.

This source of suboptimality has been demonstrated in several tasks with normal, healthy 
populations. For example, humans can learn the prior probabilities of the choice environment 
through experience, however this takes time and can be conservatively distorted as if participants 
thought the priors were closer to 50%–50% (Norton, Acerbi, Ma, & Landy, 2019). Alternatively, 
information about priors and payoffs can be explicitly conveyed to the observer, but they still 
may choose to rely on the recent stimulus history for judging the prior probabilities (Yu & Cohen, 
2009). Additionally, there is also well-known subjective distortions of probability (Fox & Poldrack, 
2009; Kahneman & Tversky, 1979), particularly for the very high or low probabilities, that also 
affect criterion placement (Ackermann & Landy, 2015). In the clinical domain, previous work 
has indicated that those with higher trait anxiety make stronger use of prior probabilities (Kraus, 
Niedeggen, & Hesselmann, 2021), so an incorrect belief is likely to have a large behavioural effect 
such as the reversal of preference from high- to low-reward stimuli. Thus, incorrect beliefs about 
priors, either from biased learning from experience or general subjective distortions of probability, 
can account for both the affective bias signature of showing a degree of conservatism in their 
responses, as well as showing stronger attraction to the low-reward stimulus than the high-
reward stimulus (e.g., as in Aylward, Hales, et al., 2019).

ProPosed Prior-beliefs test: To test this hypothesis, patients and controls could be given a task where 
the prior probability of the stimuli are directly manipulated. For example, in one block of trials the 
split between the two stimuli could be 30%–70% and the next 60%–40%, and so on to cover a 
range of possible prior probability asymmetries for low- and high-reward stimuli. Participants would 
be told at the beginning of each block the probabilities of the stimuli have changed but would be 
left to work out the ratio themselves. Then, at the end of a block, a secondary measure would 
probe the perceived prior probabilities; participants would be asked to report the the frequency of 

Figure 3 Predictions for 
criterion placement and 
proportion of low-reward 
responses for different 
incorrect beliefs. Predicted 
results shown for low-reward 
stimulus A (red) and high-
reward stimulus B (blue), with 
equal priors (P(A) = P(B) = 0.5), 
correct B responses being 
rewarded twice as much as 
correct A responses (VA,A = 2 
and VB,B = 4), and perceptual 
sensitivity of d′ = 1. A) Criterion 
placement for different beliefs 
about the prior probability 
of stimulus A. The greater 
the estimated probability 
of A ˆ( ( ))P A , the greater the 
rightward shift in the criterion. 
B) The proportion of low-reward 
responses, for different beliefs 
about the prior probability 
of A. Prediction for the use 
of the optimal criterion with 
correct beliefs shown by the 
red marker, and incorrect prior 
beliefs by the black markers. 
The more the observer believes 
A is probable, the more low-
reward responses. C) Criterion 
placement for different beliefs 
about perceptual performance. 
Under-estimations of 
performance ˆ( 1)d   lead 
to leftward criterion shifts, 
and over-estimations of 
performance ˆ( 1)d   lead to 
rightward criterion shifts. D) 
The proportion of low-reward 
responses, for different beliefs 
about performance. Predicted 
proportion with correct beliefs 
shown by the red marker, and 
incorrect beliefs by the black 
markers. Over-estimations 
of performance lead to more 
A responses and under-
estimations to less.
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low- versus high-reward stimuli (e.g., 45%–55%). These reported priors could be used in several 
analyses. The first, to assess if the clinical group overestimates the probability of the low-reward 
more so than the non-clinical group. The second, would be to see how well these reported prior 
beliefs predict criterion placement. For example, if the prior probabilities for A (low-reward) and 
B (high-reward) in a block were 50%–50%, but the observer thought they were 80%–20%, then 
they incorrectly believe the optimal criterion location is much further to the right (see P(A) = 0.5 
versus P(A) = 0.8 in Figure 3A). Then, using the pattern of Hits and False Alarms, one can compute 
the observer’s empirical criterion for that block using Eq. 3. If incorrect prior beliefs are driving 
affective bias, then the predicted criterion for P(A) = 0.8 and their empirical criterion should match. 
Equivalently, one could compare the predicted proportion of A responses according to the SDT 
model (Figure 3B) versus the actual proportion of A responses for the incorrect belief of P(A) = 0.8. 
That is, after accounting for the incorrect prior beliefs, the individual is otherwise rational in the 
placement of the decision criterion. If the incorrect priors hypothesis is confirmed, research could 
then target how the incorrect beliefs are formed from past experiences within the task (Norton et 
al., 2019; Pizzagalli et al., 2008; Yu & Cohen, 2009).

2. BELIEFS ABOUT PERFORMANCE

Another incorrect belief that could lead to an affective bias is the observer’s belief about their 
own performance. Specifically, if an observer believes their performance to be much better than 
it actually is (i.e., higher perceived d′), then we would expect to see conservatism in their criterion 
placement (Kubovy, 1977). This is because the influence of contextual factors, such as payoffs and 
prior probabilities, is diminished when the perceptual sensitivity is high, so overestimating their 
perceptual ability will lead the observer to trust their senses more than they should. Conversely, 
observers who underestimate their ability should show the opposite pattern, responding more 
strongly in accordance with the relative value of rewards. These predictions are illustrated in 
Figure 3C-D, where overestimating d′ leads to more low-reward A responses than optimal, and 
underestimating to less A responses by shifting the criterion right or left respectively.

Consistent with low self-confidence, which forms a key part of the clinical presentation of 
deperession (Beck, 1964), previous research shows that individuals with anxiety/depression 
symptoms tend to report low confidence when performing perceptual tasks (Rouault, Seow, Gillan, 
& Fleming, 2018). These trial-to-trial reports, if they inform a global sense of belief in performance 
(Rouault, Dayan, & Fleming, 2019), would predict a bias in criterion placement that is a reverse of 
affective bias. That is, the observer would be strongly influenced by the reward structure of the 
task, reporting the high-reward option against their own sensory evidence. This is supported by 
the findings of strong prior use in individuals with higher trait anxiety (Kraus et al., 2021). It is for 
this reason that we believe investigating beliefs about overall task performance is important to 
understanding the interplay between affective bias and metacognitive differences in observers 
with anxiety or mood disorders. However, how observers come to form an estimate of their own 
perceptual sensitivity is not well understood and rarely discussed (Rouault et al., 2019; Rouault & 
Fleming, 2020).

ProPosed Performance-beliefs test: Beliefs about performance could be investigated in a simple signal-
detection task with a low reward and a high reward stimulus that are presented 50%–50% and 
without varying difficulty level. Two types of secondary measures could be collected in the same 
task: local confidence reports, where after each perceptual decision, the observer would report their 
sense of confidence in the correctness of their decision, and global confidence reports, where at the 
end of the experiment, the observer would report their belief about their overall performance (e.g., 
on a scale of 0 to 100% correct). We predict that the anxiety/mood individuals would report lower 
confidence in their performance both after trials and at the end of the experiment, but they would 
also report the low-reward stimulus more frequently than optimal (in accordance with affective 
bias but in conflict with the predictions of SDT). To be precise, the clinical group would have more 
low-confidence ratings after trials and rate their global performance as lower as compared to the 
control group, but have an empirical criterion consistent with a larger overestimation of d′ than the 
controls. Understanding how incorrect performance beliefs is important because it could interact 
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with the other sources of bias (e.g., prior beliefs), reducing the degree of affective bias, which need 
to be modelled to accurately predict choice behaviour.

3. SUBJECTIVE VALUE OF REWARD

Another plausible explanation is that the individuals with affective bias value rewards differently. 
In particular, if there is a devaluing of the high reward, then the subjective value of the low 
and high reward are more similar, and thus there is less motivation to prefer one outcome over 
the other. This would be consistent with anhedonia in depression, framed as “loss of interest 
or pleasure” in diagnostic criteria (American Psychiatric Association, 2013), in which previously 
enjoyable things lose their value to depressed individuals. This is indeed observed on a wide range 
of reward-based cognitive tasks (Halahakoon et al., 2020; Pizzagalli et al., 2005). To understand 
how an individual subjectively experiences reward, scientists can measure the subjective utility 
function (Fox & Poldrack, 2009; Kahneman & Tversky, 1979), which maps the objective value of a 
reward, V, to its subjective value, u(V), and is typically expressed as in terms of a power function

 ( )u V V  (8)

(see Figure 4A) with 0 < α < 1 typical (e.g., see Farashahi, Azab, Hayden, & Soltani, 2018; Hertwig 
& Erev, 2009). In the SDT context, changing the subjective utility function has implications for the 
reward landscape (Figure 4B) and consequently the placement of the decision criterion (Figure 4C). 
The closer the subjective reward values are to equal, the closer the rational observer will place 
their criterion to the neutral location (Ackermann & Landy, 2015), because biasing the responses in 
favour of the high-reward stimulus makes little sense if the difference in reward is small, resulting 
in fewer high-reward responses (Figure 4D). Given this context, we would hypothesise individuals 
expressing affective bias have smaller α values than a healthy control population if subjective 
utility is the source of affective bias in perceptual tasks. Clinical support for this hypothesis on 
subjective value in mood and anxiety disorders is limited and of mixed results (Baek et al., 2017; 
Charpentier, Aylward, Roiser, & Robinson, 2017; Chung et al., 2017), suggesting further research is 
required to understand the role of reward value distortions in choice behaviour. Additionally, to our 
knowledge, subjective reward values and bias in a perceptual task have not been compared within 
individuals with anxiety or mood disorders.

Figure 4 The effect of 
subjective value on decision 
making. Predicted results 
shown for low-reward stimulus 
A (red) and high-reward 
stimulus B (blue), with equal 
priors (P(A) = P(B) = 0.5), correct 
B responses being rewarded 
twice as much as correct A 
responses (VA,A = 2 and VB,B = 4), 
and perceptual sensitivity of 
d′ = 1. A) Example subjective 
utility functions. When α < 1, 
the subjective value of the two 
reward outcomes (A/B) is more 
similar. B) Reward landscape 
is affected by the subjective 
utility function. Dashed lines 
show the criterion placement 
expected to maximise expected 
gain with the subjective reward 
values. When α < 1, there is 
a dampening affect, with the 
perceived consequence of 
criterion misplacement being 
small (i.e., loss incurred is 
minimal for other values of c). 
C) Optimal criterion placement 
according to the subjective 
reward ratios. As α → 0, the 
criterion placement that 
maximises expected reward 
with these distorted reward 
values shifts towards the 
neutral position between the 
distributions. D) The proportion 
of low-reward responses when 
criterion is adjusted according 
to the subjective value of 
reward. When the subjective 
value matches objective value 
(red), the proportion of A 
responses is lower than if the 
subjective value is used with 
α < 1 (black).
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ProPosed subjective-value test: To test this hypothesis, participants would do a simple signal-detection 
task (e.g., a low reward and a high reward stimulus, presented 50%–50%, constant difficulty level). 
The secondary measure would be a lottery task to measure the subjective utility functions of 
participants. This would involve, presenting a series of lottery choices like we described earlier (e.g., 
25% chance of winning 10 dollars, or 100% chance of 2 dollars). Then one could assess group-
level differences in the subjective evaluation of reward (i.e., differences in α), as well as the degree 
to which subjective value predicts criterion placement in the perceptual task. For example, if a 
participant has a strong insensitivity to reward according to the lottery task (e.g., α = 0.25), then 
SDT would predict a rightward shift in their criterion in the perceptual task (see Figure 4C) and an 
increase in the proportion of A responses (see Figure 4D). Thus this experiment has the potential to 
show a direct relationship between subjective processing of reward and behavioural bias.

4. LEARNING THE CONTEXT

In several aspects, observers must succeed in learning about the context and their own performance 
to respond optimally. There is extensive clinical evidence for learning differences in depression and 
anxiety, from general cognitive impairment (Rock et al., 2014) through to more specific changes 
to learning captured by, for example, reinforcement learning models (Aylward, Valton, et al., 2019; 
Halahakoon et al., 2020). In perceptual tasks, participants must learn to correctly estimate the 
prior probabilities of the stimuli and the reward contingencies, as well as monitoring feedback and 
confidence to estimate perceptual sensitivity. Some models consider this learning process as a 
gradual adjustment of the criterion to its optimal position (Busemeyer & Myung, 1992; Maddox & 
Bohil, 2003), where adjustment stops when the rate of reward appears to be no longer increasing 
(i.e., the maximum is found; peaks in Figure 4B). Others investigate the learning process at the 
component level (e.g., priors) in dynamic environments with changing choice context (Norton 
et al., 2019). If learning rates differ between those with and without anxiety/mood symptoms 
(Aylward, Valton, et al., 2019; Vrieze et al., 2013), this could increase criterion conservatism and 
cause sluggish responses to change in dynamic environments. Supporting this hypothesis is work 
by Pizzagalli et al. (2008) showing that clinically depressed individuals have difficulties integrating 
the reinforcement history over time to correctly bias their responses towards highly rewarded 
options.

ProPosed learning test: To investigate the role of learning in affective bias, one could use the overt-
criterion task of Norton et al. (2019) with changing prior probabilities for low- versus high-reward 
stimulus. In this perceptual task, observers are shown stimuli with high external noise (i.e., 
experimenter-controlled noise) and are required to continually monitor the stimulus priors to adjust 
their criterion accordingly. Instead of reporting stimulus A or B, observers are asked to explicitly 
place a criterion and their response would be scored as correct if this criterion correctly categorises 
the stimulus. This modification allows for rapid shift in criterion to be detected and modelled. 
We predict that observers who display affective bias could either 1) have a slower learning rate, 
2) a stronger bias towards equal probabilities, or 3) a bias inflating the probability of the low-
reward stimulus. This task would be well complemented by including additional learning tasks, 
such as the multiarmed bandit task (Aylward, Valton, et al., 2019), to directly compare learning 
parameters across models of the tasks, as well as the subjective utility measures mentioned in the 
previous future direction.

5. NEED FOR ACCURACY

There are two ways in which a need for accuracy could affect criterion placement. The first is by 
selecting a decision strategy that emphasises getting the perceptual judgements correct over 
earning the most reward in the task. In the extreme, ignoring the reward values entirely would 
lead to the highest perceptual decision accuracy, but in practice observers are more likely to select 
a mixture strategy that is a trade-off between accuracy and gains (Maddox & Bohil, 1998, 2003). 
This is because there is the tension between maximising gain versus maximising accuracy when 
payoffs are unequal. It is as if there is a cognitive cost to being incorrect and/or cognitive reward 
for being correct that is at play in perceptual decision-making.
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This trade-off behaviour in strategy selection can also be interpreted as a different need for accuracy. 
Namely, the need for our sense of confidence to best reflect the true probability of being correct, 
as sacrificing some gains for better accuracy may foster more accurate judgements of perceptual 
confidence (Locke, Gaffin-Cahn, Hosseinizaveh, Mamassian, & Landy, 2020). The payoffs of a task 
can influence confidence ratings (Lebreton et al., 2018; Locke et al., 2020) despite not changing 
that probability that the decision was correct. For example, this can be an overconfidence when 
reporting the highly-rewarded stimulus and underconfidence when reporting the low-reward 
option. As such, the less influence observers give to the payoffs of a task, the more accurate 
their confidence judgements will be. This hypothesis is supported in the affective bias literature 
by a phenomenon known as a ‘catastrophic response to perceived failure’ (Elliott et al., 1996; 
Roiser et al., 2011), where one instance of failure can have a snowball effect for a future series 
of failures. Thus the consequence of making a judgement against what the observer believes to 
be correct has a strong psychological cost that has not been factored into the optimal criterion 
calculation (Eq. 6) by the experimenter. In terms of confidence ratings, individuals with anxious-
depression symptoms are also more accurate in their confidence judgements than those with 
other psychopathologies (Rouault et al., 2018), as would be predicted by this hypothesis.

ProPosed need-for-accuracy test: To test this hypothesis, individuals with and without anxiety and/or 
mood disorder symptoms could perform a perceptual task with the reward values changing from 
block to block. Strategy could be assessed by asking participants to self-report the importance 
they placed on getting the answers correct versus earning the most reward at the end of each 
block. Additionally, confidence judgements, on the correctness of their decision, could be included 
after every trial. Standard extensions of the SDT framework for confidence would then reveal if 
that observer let the rewards influence their confidence (Locke et al., 2020). If affective bias is 
driven by a need for high accuracy, we would see the anxiety/mood disorder individuals giving 
greater preference for being correct over earning more reward and being more susceptible to 
letting reward influence their sense of confidence.

ADVANTAGES AND LIMITATIONS OF THE PROPOSED APPROACH

SDT is a flexible modelling framework that has a lot of advantages. There is the ability to dissociate 
sensitivity and bias, tailor the model to individual observers, specify the behaviour of an ideal 
observer, and make quantitative predictions about behaviour for various suboptimalities. This 
allows researchers to go beyond simply cataloguing suboptimalities, to actually investigating 
their source (Rahnev & Denison, 2018). For example, we show how different errors in processing 
the decision context (e.g., undervaluing the high reward stimulus) can be converted into a direct 
prediction about the amount of bias. Additionally, we have included a few secondary measures 
here as examples, but this is by no means an exhaustive list of what is possible to pair with 
the SDT framework. What we propose here are tasks optimised for SDT that could increase our 
understanding of affective bias identified by previous studies not optimised for this approach (e.g., 
Aylward, Hales, et al., 2019).

An advantage of being more precise about the sources of bias is that different interventions may 
be better suited to targeting different sources. This is known as ‘equifinality’, where multiple 
mechanisms lead to the same endpoint. Specifically, in this case, it may be that all the mechanisms 
we highlight are important in driving affective bias, but vary from individual to individual. At 
the same time, different treatments may be better suited to targeting different mechanisms. 
Antidepressant medication, for example, may target learning mechanisms, whereas psychological 
therapy targets prior beliefs. Assaying current interventions against the tests we propose here may 
therefore eventually enable us to match individuals to treatments that will work for them.

As with all methods though, the approach we have outlined does have some limitations. One 
potential limitation is that while individuals with mood and anxiety disorders demonstrate broad 
alterations in cognitive performance (Rock et al., 2014), many of the clearest alterations are 
in executive function and aspects of cognition that are potentially ‘upstream’ of the perceptual 
processes that SDT is perhaps best suited to model. Moreover, we have restricted our description of 
the choice context to priors, payoffs, and performance, because these are well integrated with the 
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SDT framework. It is likely other factors that influence the choice context are unable to be captured 
by SDT (e.g., emotions, social factors, framing). Nevertheless, being precise about potential sources 
of bias that could emerge from a SDT perspective, and developing tests of these different biases, will 
ultimately enable us to rule them out before moving on to more complex potential sources of bias.

Relatedly, a general concern with laboratory experiments is their ability to generalise to real-world 
scenarios, yet at the same time be suitable for translational research (Aylward, Hales, et al., 2019; 
Der-Avakian et al., 2013). This is even more important when applying research in the context of 
mental health. While the standard signal-detection task might not capture the complexity of 
our everyday decisions, there is increasingly greater focus in basic science on extending these 
tasks to more complex, dynamic variants (e.g., Norton et al., 2019) that might help increase the 
applicability of these tasks.

A third limitation is that for many of the proposed experiments, we are relying on subjective self-
reports as secondary measures. While some of these are proving to reveal interesting relationships 
with mental health (e.g., confidence as shown by Rouault et al., 2018), others are newer or have 
been developed for the purposes of this article. Though there is increasingly more interest in 
developing non-introspective measures of beliefs, such as monitoring hand movements (e.g., 
Dotan, Meyniel, & Dehaene, 2018; Hudson, Maloney, & Landy, 2007; Trommershäuser, Maloney, 
& Landy, 2008) or eye movements (e.g., Balsdon, Wyart, & Mamassian, 2020; Lempert, Chen, & 
Fleming, 2015). If self-report methods do not prove useful, these sorts of indirect methods may be 
necessary to measure beliefs.

Finally, there are also general response biases that arise for reasons such as the experimenter’s 
instructions (Morgan, Dillenburger, Raphael, & Solomon, 2012), different amounts of effort 
required to make each of the responses (Hagura, Haggard, & Diedrichsen, 2017), or the Gaussian-
noise assumption of the basic SDT model is incorrect (Maloney & Thomas, 1991). However, as 
these are likely to be consistent across the clinical and control groups, they are less of a concern.

SUMMARY
In this paper, we have highlighted the advantage of the SDT framework for quantifying suboptimal 
decision-making and the various underling mechanisms which may drive affective bias in 
psychiatric disorders. We have also suggested a series of studies that could tease apart which of 
these mechanisms lead to affective bias using secondary measures and the predictive power of 
the SDT framework (Ackermann & Landy, 2015; Rahnev & Denison, 2018). The appeal of studying 
affective bias with low-level perceptual tasks is that such tasks are particularly amenable for 
testing both humans and animal models (Choi et al., 2016; Scannell & Bosley, 2016). Being more 
precise about the causes of affective bias in humans may allow us to more precisely test how 
representative the animal models are and hence bolster the theoretical underpinnings of drug 
development pipelines for treatments of anxiety and mood disorders.
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