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ABSTRACT

Psychiatric practice routinely uses semistructured and/or unstructured free text to record
the behavior and mental state of patients. Many of these data are unstructured, lack
standardization, and are difficult to use for analysis. Thus, it is difficult to quantitatively
analyze a patient’s illness trajectory over time and his or her responsiveness to treatment, and
it is also difficult to compare different patients quantitatively. In this article, experts in the
field of psychiatry, along with machine learning models, have collaboratively transformed
patient data available in status assessments generated by physicians into binary vector
representations. Data from patients with mental health disorders collected within a
real-world clinical setting from one of the largest behavioral electronic health record (EHR)
systems in the United States have been used for generating these representations. The binary
vector representation of these health records is shown to be useful in various clinical tasks,
such as disease phenotyping, characterizing the suicidality of patients, and inferring
diagnoses. To summarize, this approach can transform semistructured free-text summaries of
patients’ status assessments into a structured, quantifiable format, which enriches the data
that reside within EHR systems. This allows for effective intra- and interpatient quantifications
and comparisons, which are much needed in the field of mental health. With the aid of these
binary representations, patients’ mental states can be systematically tracked over time, as can
their responses to medications at the individual and population levels.

INTRODUCTION

Mental disorders are among the most challenging illnesses to treat due to the paucity of
biomarkers that identify and quantify the severity of disease, as is standard in other therapeutic
areas. Diagnosis in mental health is based upon observations as specified by systems such
as the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5; American
Psychiatric Association, 2013) and the International Classification of Diseases (ICD; World
HealthOrganization, 1993). Categorization within such systems predates modern neuroscience
(Marshall, 2020), hence the contextualization of advances in neuroscience within such clas-
sification systems for disease and severity is rather difficult. Furthermore, unlike in other areas
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of health care, external experiences and social constructs typically have a significant influence
on the prognosis and efficacy of the treatment of mental health disorders.

There exists a significant gap between advances in neuroscience and their ultimate trans-
lation into treatment decisions. This has led to a call for a more rigorous, evidence-based sys-
tem, called the Research Domain Criterion (RDoC; Cuthbert, 2014; Cuthbert & Insel, 2013;
Cuthbert & Kozak, 2013), that will attempt to classify disorders based upon a combination
of domains/constructs of behavior and mental capacity and units of analysis such as genes,
molecules, cells, brain circuits, physiology, behavior, self-reports, and other paradigms. This
is a radical step away from a purely behavior-based system to a more evidence-based sys-
tem. Computational psychiatry has been proposed to be a bridge that can further accelerate
the translation of neuroscientific research into clinical practice (Huys, Maia, & Frank, 2016).
Greater adoption of RDoC and similar systems will enable large, multiscale models to be
used in conjunction with traditional therapeutics to improve the treatment of mental health
disorders.

The MindLinc Global Database (MGD) is a repository of longitudinal patient records
with behavioral health disorders from more than 25 hospitals that use the MindLinc electronic
health record (EHR; Beyer, Kuchibhatla, Gersing, & Krishnan, 2005). It is one of the largest
longitudinal behavioral health databases in the world to capture clinical data in a real-world
setting. MGD comprises records of more than 500,000 patents, with more than 14 million
certified visits. As of early 2016, there were more than 42million records of diagnostic data, 68
million records of prescription data, 22 million records of information pertaining to substance
abuse, and 330 million records of mental status examinations.1

The Mental Status Examination (MSE; Koita, Riggio, & Jagoda, 2010; Martin, 1990) is
an important clinical assessment in psychiatric practice. It is an essential tool that is used
in part for mental health diagnostics. Clinicians assess a patient’s mental state using various
methods. Primarily, the patient’s electronic medical record (EMR) history and the clinician’s
expert opinion on the patient’s in-clinic behavior during the visit formulate the basis for the
diagnosis, but it may be enhanced by conversations between the clinician and the patient and
elements of the formal MSE results. For example, the MSE may assess a patient’s memory,
recall, and cognitive ability by asking the patient to serially count down from 100 in steps of
7 or the ability of a patient to formulate abstract thoughts by assessing the patient’s ability to
interpret proverbs. The result is a clinician note that is a mix of symptoms (what the patient
complains about), signs (what the clinician observes about the patient), the patient’s physical
appearance, and responses to formal assessments of specific brain functions that are used in the
clinic in a nonsystematic way but are borrowed from the full formal MSE. We hypothesize that
clinical observations, reports by the patient, and the assessment of brain function, as achieved
by using elements of the formal MSE, together may reflect the mental health and/or cognitive
status of a patient. We have developed a way to systematically extract these data from each
clinic visit, allowing the integration of information across visits and patients over time. For
ease of discussion, we will call this system the status assessment (SA) for each clinical visit.

Within the MGD, most physicians appear to summarize patients’ clinical assessments
as a single component, which includes the formal MSE, ad hoc observations, and symptoms,

1 The anonymization of clinical records is performed on-site, following “Safe Harbor” specifications of the
Health Insurance Portability and Accountability Act (1996), with the full consent of the individual hospitals,
before it is extracted and put into a common database. These anonymized data are available to all hospitals that
also contribute data to the MGD for academic research.
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Figure 1. Boxplots showing the distribution of the percentage of visits that record different
psychiatric assessments within the MindLinc Global Database (MGD) over the entire population
of patients. It is worth noting that the Clinical Global Impression (CGI), status assessment (SA),
and diagnosis are generally recorded for the majority of the visits, while the Global Assessment of
Functioning (GAF) and symptom information are infrequently recorded within the MGD.

within the SA rather than to record symptom information within structured EHR fields. There-
fore, structured symptom information is unavailable for most encounters (median 0%), whereas
the SA is available for the majority of the visits (median 67%), along with the diagnosis (median
80%) and the Clinical Global Impression (CGI; Guy, 1976) score (median 60%), as shown in
Figure 1.

Although the SA allows clinicians to enter information about the mental health of the pa-
tient in a very flexible manner, it also promotes the accumulation of unstructured data in place
of structured fields. In MGD, for example, the information for SA is present as a (category,
sign) tuple. Among the 25 hospitals that contribute data to the MGD, both the categories and

Computational Psychiatry 78



Quantification of the Mental State of Psychiatric Patients Mukherjee et al.

the signs lack standardization. SA data are categorized into 69 separate categories, many of
which represent the same information, and should be regrouped into a smaller set of standard
categories. The sign is usually represented as a free-text description. SA is one of the richest
categories of data available from real-world psychiatric practice, but it is practically impossible
to use for analytical purposes because of its unstructured nature. From a psychiatric perspec-
tive, the SA provides a granular, multidimensional representation of the mental state of patients
at the time of consultation. Hence, significant improvements in our understanding of different
mental state disorders can be achieved if the information contained in this SA is appropriately
harnessed.

In the last decade, great progress has been made in the field of natural language process-
ing (NLP). This is especially true with the advent of deep learning–based NLP. Currently, some
of the best algorithms for part-of-speech tagging (Huang, Xu, & Yu, 2015), parsing (D. Chen
& Manning, 2014; Dyer, Ballesteros, Ling, Matthews, & Smith, 2015; Zhou et al., 2017; Zhu,
Zhang, Chen, Zhang, & Zhu, 2013), named entity recognition (Chiu & Nichols, 2016; Passos,
Kumar, & McCallum, 2014), sentiment classification (Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013), machine translation (Koehn, Och, & Marcu, 2003), and contextual embeddings
(Q. Chen, Zhu, Ling, Wei, & Jiang, 2016; Liu, Shen, Duh, & Gao, 2017) are done with deep
learning–based NLP. Most medical databases, including those within hospitals, clinics, and
pharma companies, are rife with textual data, including structured and semistructured fields,
clinician notes, reports, and so on. More recently, language models, such as Deep Bidirec-
tional Transformers for Language Understanding (BERT; Alsentzer et al., 2019; Devlin, Chang,
Lee, & Toutanova, 2018), Generative Pretraining Transformer (GPT; Radford et al., 2019), and
XLNet, have been proposed that are able to disambiguate the context of the meanings of the
same words used in different contexts. Context-specific models based on BERT have been
generated for the medical domain using articles from Wikipedia, PubMed, and PMC, in the
form of BioBERT (Lee et al., 2019). It has been shown that clinical notes have language and
nomenclature that are different from the text present in the journal articles of PubMed and
PMC. Another pretrained BERT-based model, called ClinicalBERT (Alsentzer et al., 2019), has
been trained from clinical notes available in the MIMIC (Johnson et al., 2016) database. Clin-
icalBERT has been shown to outperform BERT and BioBERT in NLP tasks catering to clinical
notes.

Deep learning–based NLP has been used for mining text data and obtaining meaningful
information from clinical notes, as well as from social media, and falls under the purview of
information extraction from free text (Jing, 2012). Deep learning–based NLP has been used in
many diverse applications, such as recognizing adverse drug interactions from social media
(Wunnava, Qin, Kakar, Rundensteiner, & Kong, 2018), predicting health care trajectories from
medical records (Pham, Tran, Phung, & Venkatesh, 2017), predicting early psychiatric read-
mission from discharge summaries (Rumshisky et al., 2016), extracting symptoms of severe
mental illness from clinical texts, text-based phenotyping, subdomain classification (Jackson
et al., 2017), drug–drug interactions (Xu, Shi, Zhao, & Zheng, 2018), and hospital mortality
prediction (Wray et al., 2018). In this article, a combination of NLP and the expertise of a sub-
ject matter expert (SME) has been used for creating a system that will allow for the conversion
of the SA data into a standardized binary vector. This standardization will not only allow dif-
ferent patients from disparate hospitals to be compared with one another but also allow these
vectors to be used in analytical and machine learning (ML) algorithms to better predict clinical
outcomes.

In the section “Method,” the SA data are described in detail. Furthermore, the reclas-
sification of categories and free text within the SA is also described. Since the data are not
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error-free, methodologies used to preprocess the free text for correcting the most prominent
errors have also been described. Apart from above, the NLP neural network architecture is
explained in detail in the section “Method.” The section “NLP Classification Model” lays out
the detailed training process and the testing of the long short-term memory (LSTM)-based NLP
model, and it compares the performance against other traditional ML models. In the section
“SA Vector Use Cases,” a few use cases have been described that utilize the SA vector output
of the NLP model. These use cases vary in complexity, from the development of simple suici-
dality scales to clinical phenotyping. These use cases show the value of a quantitative set of
multidimensional patient symptoms in a physiologically relevant quantitative framework.

METHOD

SA Overview

Inside the MindLinc EHR, the SA is the most abundant clinical assessment performed by the
clinicians and is one of the largest sources of data in MGD. A screenshot of the EHR front end
resulting in the generation of the SA data is shown in Figure 2.

As shown, the SA within the EHR is categorized into several functional categories, such
as appearance, attitude, cognition, intelligence, orientation, and perceptual, which may be
amended by the physician adding more categories, as necessary. Each category has one or
more items (called “signs”) that describe the patient within that particular category. These signs
are typically free-text entries entered by the physician, as shown at the bottom of Figure 2. This
section has been zoomed-in within the picture so that it is easier to see the text box and the
suggestion “Pick a category then type a sign.” A full list of categories and the number of unique

Figure 2. A screenshot of the electronic health record (EHR) software used for inputting status
assessment (SA) data into the database.
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Table 1. The different reclassified categories, along with the number of unique signs associated with each

Total counts Percentage validated

ID Reclassified categories Unique signs Total signs Unique Database Groups

1 Abnormal or psychotic thoughts 60,115 53,715,764 0.83 1.08 1

2 Affect 29,559 22,417,497 4.27 97.78 1

3 Appearance 5,743 21,673,586 97.79 98.68 1

4 Association 158 538,919 100 100 1

5 Attention/concentration 2,704 7,551,799 23.56 99.85 1

6 Attitude 17,451 19,525,590 3.4 99 1

7 Cognition 7,639 10,789,531 0.26 0.67 3

8 Executive functioning 1,525 7,002,438 12.33 99.89 1

9 Fund of knowledge 162 710,150 83.95 99.99 2

10 Gait and station 440 659,938 9.32 24.68 3

11 Homicidal 3 9,509 100 100 3

12 Impulse control 19 531,981 100 100 3

13 Insight 3,733 15,389,888 2.76 3.79 2

14 Intelligence 1,809 12,563,500 2.6 6.09 3

15 Judgment 4,225 15,899,780 1.04 3.67 3

16 Language 946 6,086,767 10.47 99.82 2

17 Level of consciousness 1,199 9,909,668 8.26 99.89 2

18 Memory 6,302 12,884,403 0.4 4.24 3

19 Mood 40,377 26,680,794 0.26 94.36 2

20 Orientation 6,698 14,479,475 0.52 9.4 3

21 Psychomotor 21,183 13,837,858 0.47 94.71 2

22 Reasoning 1,534 6,494,647 6.45 99.54 2

23 Sensorium 301 220,005 32.89 65.9 2

24 Sleep 24 80,929 100 100 3

25 Speech 20,374 16,214,748 0.68 95.41 2

26 Suicidal 19,273 15,001,434 0.51 28.93 2

27 Violent thoughts 13,841 21,200,549 0.72 32.95 2

signs associated with each category are available in Table 1. These signs represent free-text
descriptions of the patient associated with that particular category.

Examples of signs associated with the category “affect” are “able to smile and laugh
appropriately,” “abruptly tearful at times,” and “actually appears euthymic but displays some
anxiety.” As is evident from these examples, this category represents the psychiatrists’ impres-
sions of the patient at a particular time.

On the other hand, another category, “orientation,” represents the results of specific
cognitive tests performed by physicians on the patient with the help of questionnaires to check
their orientation to time, location, and so on. Examples of such questions are as follows:

• What is your full name?
• Where are we at (floor, building, city, county, and state)?
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Figure 3. An overview of the process that is used for converting the semistructured status as-
sessment (SA) into the reclassified SA vectors. A) The subject matter expert (SME) first reclassifies
the original 69 categories into 27 categories. B) After the reclassification of the categories, the SME
converts the free text (called signs) in each of the 27 categories into subcategories called factors.

• What is the full date today (date, month, year, day of the week, and season of the year)?
• How would you describe the situations we are in?

The patient’s orientation and assessments resulting from the answers to these questions are
entered into a database in the form of free text. Examples of entries for the orientation category
are “intact oriented for all the four questions” and “intact oriented ×4.”

As mentioned before, the combination of inputs from a SME and a set of ML models,
working in tandem with the SME, has been used for this vectorization process. The first part of
this process involves human annotation, and this process is schematically depicted in Figure 3.
The second part is a combination of a human classification process and machine learning,
which progressively improves the ML algorithms over time. The overview of this is shown in
Figure 4. These two steps are described in detail in the next two subsections.

Recategorization of SA

The original SA comprises a total of 69 categories. Since the data within the EMR are collated
from several different hospitals, categories defined in one hospital are not identical to those
defined in another. This is because the MindLinc database allows clinicians to define new
categories as they deem necessary. Thus, in many cases, what should be represented by a
single category is represented by a number of categories with similar names, each originating
from a different hospital.

Since the SA comprises a (category, sign) tuple, the categories were standardized first.
A SME first reclassified the original 69 categories into 27 by merging similar categories into
a single category, as shown in Figure 3A. The details of the original 69 categories, and the
new reclassified categories into which they have been merged, are provided in Appendix A of
the Supporting Information. This is a many-to-one mapping and is performed once. The new
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Figure 4. Details of the process of conversion of status assessment (SA) signs into reclassified
SA factors for each category. 1) The manual classification of the most common 100 sentences
is performed first. 2) Then, an optimizer is used for training the parameters of a natural language
processing (NLP) model. 3) This optimized NLP model is then used for generating a set of new
predictions, 4) which is verified by the subject matter expert (SME). 5) This new information is used
for reoptimizing the NLP model. The three Steps 3, 4, and 5 define an iterative process, which, over
a number of iterations, provides a reasonable set of optimized models.

reclassified categories created in this manner are subsequently known as “category,” unless
otherwise specified.

SME Categorization

For every category, the SME generates a set of subcategories after reviewing the set of available
signs within that category, as shown in Figure 3B. These subcategories represent the major
classifications that summarize the major aspects of information that clinicians typically want
to capture within that category. For example, the major subcategories into which the category
“language” is categorized are “intact,” “neutral/unable to categorize,” “repetition intact,” “is-
sues with repetition,” “object naming intact,” “issues with object naming,” “impaired,” “non-
verbal/mute,” “minimally verbal,” and “issues related to DD.” With modern NLP technologies,
it is possible to convert free text describing, for example, the linguistic abilities of a patient
into one of the aforementioned subcategories. A combination of these subcategories would
be able to describe the state of a person within that particular category. A subcategory within
a category is called a “factor” of a particular category. A list of factors associated with each
category is tabulated in Appendix B of the Supporting Information.

After classifying the original categories into the reclassified categories, the signs in each
category are subsequently categorized into factors, as shown in Figure 4. As mentioned before,
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a sign represents free text that has been entered by the physician describing the patient. An
example of such a sign within the category “abnormal or psychotic thoughts” is “he says he
sees a chicken and fish eating each other in my office.” This is classified by the SME as the
factor “experiencing hallucinations (visual),” in the segment shown in Figure 4, Step 1. The
factor_id represents the index of a factor within a category. Notice that the factor_id of this
particular factor is 5, as represented in Row 6 of Appendix B of the Supporting Information.
Hence, this particular string is represented by the vector [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0] such that the value of the sixth index is set to 1 and the values of all the other digits
are set to 0. It is important to remember that the patient might be simultaneously experiencing
auditory hallucinations as well. A patient experiencing both auditory and visual hallucinations
will be represented by the vector [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (referred to as
the categorical vector hereafter), wherein the fifth and the sixth digits of the vector are set to 1
and the rest are set to 0, in accordance with factors defined in Appendix B of the Supporting
Information.

As one might well imagine, the amount of information that is available within the differ-
ent categories is different. It is interesting to note that many clinicians use the same phrase for
describing a particular mental health condition. For example, the phrase “not present” occurs
more than 11 million times while describing patients’ “violent thoughts.” Similarly, “average”
occurs more than 9 million times while describing “intelligence,” and “without hallucinations”
occurs more than 8 million times while describing the “abnormal or psychotic thoughts” of
a patient. It goes to reason that classifying the most common signs would allow significant
portions of the SA database to be mapped into meaningful categories. This provides a ground
truth against which different NLP models may be trained. Once the SME has categorized a few
of the most popular signs, a NLP algorithm is optimized to learn these classifications, as shown
in Figure 4, Step 2. This allows the NLP algorithm to predict the next few most populous signs,
as shown in Figure 4, Step 3. These predictions are then validated by the SME to generate a
new set of data representing ground truth, as shown in Figure 4, Step 4, which can then be
used to reoptimize the NLP algorithm, as shown in Figure 4, Step 5. Once more signs have
been validated by the SME, the models are retrained to incorporate these new data.

Table 1 shows the total number of signs available within different categories, along with
the total number of unique signs available in each category. The percentage of unique signs that
have been validated, and the resultant percentage of the total number of signs in the database
that have been validated as a result, for each category, are tabulated in the same table. As can
be seen, 15 out of the 27 categories have over 95% of the signs validated.

The final SA vector (SAV) is generated by concatenating the entire set of 27 categorical
vectors into a single vector that is 241 bits long. The bit positions for each of the categories
and factors in the reclassified SAs are tabulated in Appendix B of the Supporting Information.
The factor in the reclassified SA vector is one that is assigned by the SME if available, else it is
one that is predicted by the NLP algorithm.

Preprocessing

Preprocessing comprises of all the steps that ultimately lead to the conversion of sentences into
a list of word vectors (Bengio, Ducharme, Vincent, & Janvin, 2003). Before cleaning the signs,
all signs are grouped into unique signs independent of the category to which they belong so
that each unique sentence is cleaned only once. This results in 267,337 unique signs. Note
that the same sign may appear in multiple categories. For instance, “mildly impaired” appears
in nine different categories but is preprocessed only once for expediency.
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Tokenization is performed by splitting sentences on spaces. Stemming or lemmatization
is not performed, as we wish to preserve as much of the meanings of the various words as
possible, including their tenses.

After tokenization is performed, a vocabulary is generated, along with a list of words
present in all the signs. Subsequently, Google’s pretrained word2vec model is used for trans-
forming the words in the vocabulary into word vectors. Not all words in the vocabulary have
a corresponding word vector because of reasons such as misspellings, abbreviations, or the
presence of numbers. Words that are not present in the pretrained model are dealt with in the
following manner:

1. Common words, such as “a,” “to,” “and,” and “of,” are removed
2. Incorrectly spelled words have been corrected.
3. Contractions, abbreviations, and acronyms have been expanded.
4. Each digit in numbers has been replaced with the “#” character. This step is specific to

the way in which Google’s word2vec handles numbers. For example, the number 54 is
replaced with the string “##.”

5. Specific items have been substituted with descriptive words, typically associated with
the “orientation” category. Examples of such substitutions are as follows:

a. Anything representing a date (like 12/10/1996) has been replaced with the word
“date.”

b. Expressions representing equations (such as 10 + 2 = 12) have been replaced with
“maths.”

c. Hospital names and locations have been replaced with “place.”
6. All punctuation has been removed.
7. Words with correct spelling but not vectorized by Google’s word2vec model have been

replaced by their synonyms.

Examples of signs and how they have been cleaned are shown in Table 2.

Table 2. A summary of the different processes used for preprocessing the free-textual signs

Sign Clean sign Tokens Action

today there are no
looseness of association
or flight of ideas.

today there are no
looseness association
or flight ideas

{today, there, are, no,
looseness, association,
or, flight, ideas}

Removed “of”; removed “.”

217 lbs on 10/27/11 ### lbs on date {###, lbs, on, date} Replaced numbers with “#”;
replaced “10/27/11” with “date”

history of a/v
hallucinations reported
and history of paranoid
delusions reported

history audio visual
hallucinations reported
history paranoid
delusions reported

{history, audio, visual,
hallucinations, reported,
history, paranoid,
delusions, reported}

Replaced “a/v” with “audio
visual”; removed “and”
and “of”

slightly dishelved slightly disheveled {slightly, disheveled} Replaced “dishelved” with
“disheveled”

mmse 28/30 mini mental state
examination ##
over ##

{mini, mental, state,
examination, ##,
over, ##}

Replaced “mmse” with “mini
mental state examination”;
replaced fraction with”’## over ##”
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NLP CLASSIFICATION MODEL

In this section, the classification model, along with its training procedure and associated re-
sults, is described. The results obtained from this model are also compared with models trained
from traditional classification approaches, and it is shown that deep learning–based models
for NLP are generally superior to classical models.

Architecture

Figure 5 illustrates the general training process of the NLP model for the ith category. As
discussed earlier, free text for the ith category (si) is preprocessed, and each unique word
in the sentence is mapped to a vector of length 300. All word vectors in a sentence are then
concatenated into a two-dimensional matrix with a size of (nw, 300), where nw is the number of
words in the sentence. Since sentences within a category have different lengths, the maximum
number of words within all sentences in the category i is represented byN. Matrices for shorter
sentences (those that have fewer than N words) are resized to (N, 300) by padding the original
matrices with zeros.

As shown in Figure 6A, a basic NLP unit for category i takes in free text (si) and classifies
it into a binary output vector (oi). The detailed NLP unit architecture is presented in Figure 6B.

Figure 5. A general model training process for a free-text classification task.

Figure 6. Natural language processing (NLP) unit. A) Basic NLP unit i for category iwith input free
text (si) and output factor (oi). B) The detailed architecture of NLP unit i. Numbers in parentheses
indicate the tensor shapes. C) Factors predicted from 27 NLP units concatenated as an integrated
status assessment (SA) result (m).
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A sequence of words (w1, w2, …, wN) from a sign together with initial hidden (h0) and mem-
ory cell states (c0) is fed into a recurrent neural network (RNN; Lipton, Berkowitz, & Elkan,
2015) comprising a single LSTM cell. The NLP algorithm has been implemented using custom
code written in TensorFlow Version 1.11 (Martín Abadi et al., 2016). A dynamic LSTM cell
(Martín Abadi et al., 2016) has been used for constructing the model. Note that in TensorFlow,
the first tensor dimension does not need to be declared during the definition of the model and
will be dynamically adjusted during runtime, based on the batch size of the input to the model.
This is generally provided by setting the first element of the shape of the tensor to None within
the model definition. Initial states h0 and c0 are set as zero vectors. The input size is (None, N,
300), as shown in the parentheses, where (N, 300) is the size of a single sign matrix and None
stands for the mini-batch size, which is automatically handled at runtime.

Series of hidden states (h1, h2, …, hN ) and memory cells (c1, c2, …, cN) are generated
as outputs from the LSTM cells. Note that the dynamic LSTM layers in TensorFlow map zero-
padded inputs to zero vectors for the hidden states, and memory cells, when the length of the
inputs (nw) specifying the number of valid words present in each sequence is provided to this
dynamic LSTM cell as an input. N hidden states from a batch of signs form a matrix with size
(None, N, nLSTM).

In this study, an attention layer is applied to combine information across all hidden states
by calculating the weighted average of them (ha). The weights for individual hidden states,
which can be regarded as the amount of “attention” paid to every hidden state, are generated
using a dense model, hereinafter referred to as the attention network, with all N hidden states
as the inputs.

The attention network consists of two or three fully connected layers (the number of
hidden layers in the attention network is a hyperparameter as discussed in the section “Model
Training”), with tanh activation in all layers except the output layer, where either a sigmoid or
a softmax activation is employed to confine the attention between 0 and 1. The choice of the
activation function (sigmoid vs. softmax) is also a hyperparameter, and the results are presented
in the section “Evaluation Metrics.” The outputs of the attention layer, or the weights with size
(None, N, 1), are then squeezed into size (None, N) before the elementwise multiplication
with the hidden states to generate the hidden states with attention having size (None, N, nLSTM).
Finally, the hidden state with attention (ha) is calculated by taking the mean of the N hidden
states, yielding a vector ha of size (None, nLSTM).

To classify ha into one of the Fi factors, it is passed through a dense network with two or
three hidden layers with tanh activation, followed by a final dense layer with sigmoid activa-
tion. The output of the dense network (ŷ) with a size of (None, Fi) is passed through a mask
layer to generate the final output (oi). In the mask layer, elements greater than 0.5 in ŷ are set
to be 1, and the rest of the elements are set to 0.

The loss function for the optimizer to train on is the mean squared error between the
predicted output (oi) and the label (ai), as shown in Equation 1, where Θ represents the model
parameters, m is the number of samples, and Fi is the number of classes for category i. y

(j)
k is

the label for sample j and class k, while ŷ
(j)
k is the output of the dense network. The loss of

a cross-validation (CV) set is monitored during the training, and early stopping is applied to
interrupt the training process if CV loss does not drop over 10 epochs:

J (ŷ|Θ) =
1

m×Fi
Σ

m
j=1Σ

Fi
k=1(y

(j)
k − ŷ

(j)
k )

2
. (1)
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To avoid overfitting and improve the robustness of the model, Gaussian noise is added
to the weights in the dense network (except for the output layer) during the training. Twenty-
seven uniqueNLP units are trained independently and predict factors (oi) for each category. The
resultant predicted factors are concatenated to form an integrated SA vector (Figure 6C) with a
length of 241, corresponding to the 241 factors (enumerated in Appendix B of the Supporting
Information). Note that each category may have multiple signs and corresponding predictions
of factors (oi,1, o1i,2, . . . oi,k). The high bits in the final categorical vectors (Oi in Figure 6C) are
a union of all high bits from oi,1, oi,2, . . . oi,k.

Model Training

In this section, the procedure used for architecture optimization, hyperparameter tuning, model
training, and model testing is described. The efficacy of the resultant models is measured
using multiple metrics, such as precision, recall, the F1 score, and the area under the receiver
operating characteristics (AUROC) curve. Finally, several use cases for the SA vector within
clinical settings are described. Optimization and evaluation involve the generation of training,
validation, and testing sets from the original data. Because some categories do not contain
a significant number of labeled/validated data, categories are split into different groups, as
tabulated in Table 1, depending on the total number of categories available. Ways in which
data have been split into categories in the different groups are explained in the following
paragraphs.

First, nomenclature that is consistent with current artificial intelligence literature (Hastie,
Friedman, & Tibshirani, 2001) is defined:

• The test set (or the holdout set) is the set used for evaluating the model. These are data
that the model does not see until the model parameters and hyperparameters are trained.

• The validation set is used for optimizing the hyperparameters of the model. Very often,
the training and validation sets are generated multiple times for a better estimation of the
validation error in the form of cross-validation—something that has been followed here
for categories in Groups 1 and 2.

• The training set is used for optimizing the parameters of a model for a given set of hyper-
parameters.

The generation of the training and test metrics is schematically represented in Figure 7.

Owing to the paucity of unique values in some categories, it is unfortunately not possible
to generate sufficient samples that would lead to the creation of separate training, testing, and
validation sets. Certain categories, such as “sleep” and “homicidal,” have only 24 and 3 unique
signs, respectively. These are categorized into Group 3. Others, such as “fund of knowledge,”
“language,” and “sensorium,” have 162 and 301 unique factors, respectively. However, not
all of these are labeled/validated by the SME. For example, for these categories, only 136 and
99 unique signs are actually labeled/validated, respectively. These are put in Group 2. Then
there are some groups for which more signs have been labeled and validated. These are put
into Group 1.

Since different amounts of labeled data are available in the different groups, the train–
validation–test splitting procedures for the different groups are also slightly different. These
differences are explained in Figure 7.

For signs that belong to categories in Group 1, an 80–20 split for the training and test
datasets has been performed. Using the training dataset, the model hyperparameters are first
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Figure 7. Schematic of the methodology used for splitting data into training, validation, and
testing datasets for generating the training and testing metrics.

optimized using a fivefold CV.Once themodel hyperparameters are optimized, a newmodel is
trained on the entire training dataset using these hyperparameters. This final training produces
the train metrics for Group 1. The test dataset that has been held out is subsequently used for
generating the test metrics for Group 1.

Signs belonging to categories in Group 2 do not have sufficient labeled data for gener-
ating separate training and test datasets. For this reason, a separate method is employed. The
entire dataset is used for training the hyperparameters using fivefold CV. Once this is done, a
fivefold CV is employed for generating five sets of train and test metrics. The resultant train
and test metric is the average of the five train and test metrics generated earlier.

Signs belonging to categories in Group 3 contain so few unique values that it is not
meaningful to generate any realistic models. For completeness, models have been trained on
all available data for categories in this group, and only train metrics have been calculated.
These metrics are provided only for completeness and not for the explicit purpose of creating
NLP models for prediction.

A mini-batch of sentence matrices of size (nbatch, N, 300), where nbatch is the batch size,
is fed into the ith NLP unit for a multiclass (Fi classes), multilabel classification task. An output
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vector oi is generated and compared to the ground truth (ai). Both oi and ai are binary vectors
with a length of Fi. The NLP model is then optimized to diminish the difference between ai

and oi. Note that the embedding size (300) is kept the same for all 27 categories, whereas the
sentence length (N) and output factor size (Fi) are determined by the sizes of inputs and labels
for each category.

Evaluation Metrics

Accuracy is computed to assess the generalization of the model. Accuracy (acc) of the NLP
unit i is calculated using Equation 2, where eleCheck is a function on NLP unit i output (o(j)

i )

and SME classified factor(s) (a(j)
i ) for the jth sign. The function eleCheck returns 1 only when

every element in o
(j)
i matches with the elements in a

(j)
i :

acc (Θ) =
1

m
Σ

m
j=1eleCheck

(

o
(j)
i , a

(j)
i

)

. (2)

Other than accuracy, the precision, recall, F1 score, and AUROC are also calculated.
These measures are calculated for every factor and subsequently averaged per category for
plotting.

Hyperparameter Optimization

During training, the following hyperparameters are tuned and optimized using a fivefold CV:
the learning rate, the size of the LSTM cell, numbers of neurons and layers for both the attention
and dense networks, the standard deviation of the Gaussian noise in the dense network, and
the type of activation function of the last attention layer. Note that each category has its own
set of optimized hyperparameters, except for the activation function of the last attention layer,
where “sigmoid” is chosen for all 27 categories. To optimize this hyperparameter, two different
activation functions are tested, that is, sigmoid and softmax.

The attention assigned to each word in 16 unique signs is presented in Figure 8 as Hinton
diagrams, wherein the length of a box represents the magnitude of attention paid to the hidden
state corresponding to a word shown on the left. Generally, sigmoid tends to pay distributed
and high attention (close to 1) to most of the words in a sign. This result is sensible, considering
the relatively short sentence lengths within the categories (95th percentile of the sentences has
a word length of six or fewer) and the fact that the resultant hidden states are semantically
relevant.

In contrast to the sigmoid activation, the softmax actively highlights important words
within the sentence. Consequently, attention is allocated to one or two key words within
a sentence. At first glance, the key words proposed by the softmax activation appear to be
less meaningful from a human perspective in many instances. Some examples are listed in
Figure 8A, where key words for a diagnosis of schizophrenia, such as “delusional,” “delusions,”
and “hallucinations,” are undervalued. However, one should notice that hidden states, which
are utilized to generate attention vectors, are semantically and syntactically correlated, as we
discussed earlier. In other words, the amount of attention that the RNN pays to an individual
hidden state is not necessarily equivalent to the attention paid to an individual input word.
During the training of the RNN, hidden states generated later in a sequence tend to have
richer information than earlier ones and incorporate information about previous words as well.
Hence attention routinely gives importance to hidden states that lag important words in a
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Figure 8. Hinton diagram of attentions generated using sigmoid (s) and softmax (sm) as shown in
the bottom of each subdiagram. The amount of attention is illustrated as the box length. A) Signs for
which softmax produces less than satisfactory attentions. B) Examples where softmax gives precise
attention.

sentence. When important words are separated from one another bymany unimportant words,
softmax can generate precise attention vectors on some signs, as shown in Figure 8B.

In this study, sigmoid is adopted given that it achieves a slightly higher accuracy score
(as discussed in the section “Evaluation Metrics”) on the test set (0.71 for Category 1, while
softmax produces an accuracy of 0.70 on the same category).

Comparison With Other Models

To compare the strength of the aforementioned model in extracting labeled signs from text,
we have developed three separate types of models for each category: support vector machine
(SVM) models, K-nearest neighbor (KNN) models, and naive Bayes models. All three sets of
models were developed for each of the 27 categories and were trained and tested on the same
data. The input to the models are generated using a binary encoded vector containing the most
common 300 words within the vocabulary using a bag-of-words approach, so that the input
sizes of the vectors used for both the LSTM model and the more standard classification models
are the same. Each model is then trained with exactly the same data as the LSTM models
with the same splits that are used for training the LSTM models. After training, the accuracy,
precision, recall, F1 score, and AUROC are calculated for the test sets in Groups 1 and 2 and
training sets in Group 3. They have also been plotted in Group 3.

Results

Data for 27 categories are separated into three groups based on their sample size (refer to
Table 1, columns “Validated Counts” and “Groups”). The accuracy, precision, recall, and F1

scores have been averaged for all factors within a category.
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Figure 9. Classification metrics for accuracy, precision, recall, and F1 scores plotted for all
categories. As can be seen, multiple models have been trained for each category and their scores
compared. For categories belonging to Group 1 and Group 2, only test metrics have been plotted,
as defined at the beginning of the section “NLP Classification Model.” For Group 3, only training
metrics have been plotted, due to the paucity of data.

Figure 9 displays the results of the four models for all categories. As described previously,
the categories are divided into three groups based on the number of labeled data present in
each group. The accuracy, precision, recall, and F1 score have been plotted for each category.
Also plotted are comparative scores for baseline models of SVM, KNN, and naive Bayes.

For Groups 1 and 2, only the test metrics, as defined in the section “NLP Classifica-
tion Model,” have been plotted. For Group 3, owing to the unavailability of sufficient la-
beled/validated data, the train metrics have been plotted. As mentioned before, this is done
only for completeness. As can be seen, the LSTM model performs better than the baseline
models, except in the precision of Category 3 and Category 8.

Other than the metrics of accuracy, precision, recall, and F1 score, the AUROC is also
calculated for all of the 241 factors. The distribution of the results is shown in Figure 10. As
can be seen, the median AUROC is approximately 0.9 for the LSTM model and less than 0.8
for the rest of the models.
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Figure 10. A summary of the area under the receiver operating characteristics (AUROC) of all
of the 241-dimensional vectors plotted as box plots for the various models that have been trained.
Comparisons are made between the long short-term memory (LSTM) model and the other baseline
models: the support vector machine (SVM) model, the K-nearest neighbor (KNN) model, and the
naive Bayes model.

It may be important to see whether a model generated from data in one set of hospitals
is generalizable to a new hospital. In this specific instance, because of the large amount of
overlap in the way in which behavior is described by clinicians, the test results appear to
improve. This is explored in Appendix C of the Supporting Information.

SA VECTOR USE CASES

In this section, three use cases are described that leverage the power of the generated SAV in
psychiatry.

Suicidality Scale and Hospitalization

In this section, a simple suicidality scale is developed based on the elements of SAV that will
inform about the propensity of suicidality of an individual patient. The suicidality scale is
calculated using the rules mentioned in Table 3. If multiple factors are present at the same
visit, then the value of the scale is set to be the maximum of the set obtained for each of the
indices set to 1.

Thus the suicidality score is a discrete-value score that takes one of the values 0, 1 2, 3,
or 4, corresponding to whether the person has “no suicidal intent,” “suicidal ideation,”
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Table 3. Steps to be taken for converting the status assessment vector (SAV) to a suicidality score

No. Steps Value of scale

1 If all of indices 166, 223, 231, 224, 225, and 226 are set to 0 0
2 If any of the indices 166, 223, or 231 within the SAV is 1 1
3 If the index 224 is set to 1 2
4 If the index 225 is set to 1 3
5 If the index 226 is set to 1 4

“suicidal ideation with intent,” “suicidal ideation with plan,” or a “suicidal attempt” present
in the SAV, respectively.

It is believed that a large part of hospitalizations for patients suffering from major de-
pressive disorder (MDD) is due to either a suicidal attempt or an increased risk of suicide.
However, the exact reason for hospitalization is rarely captured, which makes it difficult to
directly validate the belief. However, given a suicidality scale, a hypothesis can be tested to
see whether the patients tend to have a higher risk of suicide (indicated by a higher value of the
suicidality score) before hospitalization as compared to other times. Here the null hypothesis
to be tested is as follows:

H0: patients suffering from MDD do not exhibit a change in suicidal tendencies just
before hospitalization.

The diagnosis of a patient is captured in the database at each visit in a tabular format.
This table contains the patient ID, the ICD code (either ICD-9-CM or ICD-10-CM) as entered
by the clinician, and an ID for determining the visit number, among other information required
for the database. The ICD code is used for selecting patients with a particular diagnosis.

For testing this hypothesis, a cohort of patients who have been diagnosed with MDD2

and at least one recorded hospitalization event was generated. For these patients, the day of the
first hospitalization was identified. The suicidality scale for individual patients was calculated
from their SA vectors 1 day (1D), 3 days (3D), 1 week (1W), 2 weeks (2W), 1 month (1M),
2 months (2M), and 6 months (6M) before and after the first hospitalization date.

The average suicidality score has been plotted in Figure 11 for all these times before and
after hospitalization. As can be seen, there is an increase in the mean suicidal score 1 day
before hospitalization (25% increase from 1 week before hospitalization). Also, immediately
after hospitalization, there appears to be a sharp decrease in the suicidality scale (approxi-
mately the same as 1 week before).

Although there appears to be an increase in the suicidality scale just before hospitaliza-
tion, it is important to establish the statistical validity of this increase. To validate the increase,
two conditions are checked. In the first instance, the mean value of the suicidality scale of
the patient cohort calculated at each time point is compared to the mean suicidality scale
6 months before the hospitalization event. For this, an unpaired t test is performed between

2 Patients with MDD are identified as individuals who have been diagnosed with one or more of the following
ICD codes: 296.20, 296.21, 296.22, 296.23, 296.24, 296.25, 296.26, 296.30, 296.31, 296.32, 296.33, 296.34,
296.35, 296.36, F32.0, F32.1, F32.2, F32.3, F32.4, F32.5, F32.9, F33.0, F33.1, F33.2, F33.3, F33.41, F33.42,
F33.9. These include both ICD-09-CM and ICD-10-CM codes.
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Figure 11. The mean suicidality score of individuals before and after hospitalization for users
who have been diagnosed with major depressive disorder (MDD) and have at least a single hospi-
talization record.

the mean suicidality scale 6 months before the hospitalization event and the mean suicidality
scales at all other time points. The p values resulting from this series of t tests are shown in
Table 4 as “6M before.” In a similar manner, another set of t tests are performed to see whether
the mean suicidality scale 1 day before the hospitalization is the same as the mean suicidality
scale for all the other days; p values from this set of tests are also tabulated in Table 4. The
actual distributions of the scales at the same time points are compared using a Pearson’s χ2

test, and the p values are also tabulated in Table 4.

As can be seen, it is highly unlikely that the distribution with a higher mean suicidality
scale observed 1 day before hospitalization comes from the same distribution as that of the
other days.

In a similar way, it may be possible to generate the inputs for positive symptoms and
negative symptoms directly from the SA vector if measurements of the Positive and Negative
Syndrome Scale (PANSS; Kay, Fiszbein, & Opler, 1987) are unavailable.

Clinical Phenotyping

It is well known that multiple mental health disorders share symptomatic characteristics among
themselves. For example, the negative symptoms of schizophrenia contain many overlap-
ping symptoms with those of major depression with anhedonia (Chaturvedi, Rao, Mathai,
Sarmukaddam, & Gopinath, 1985). Whether a particular symptom should be included in
a diagnosis is largely determined by consensus among psychiatric practitioners.3

3 For the DSM-5, for example, this would be the DSM-5 Task Force, along with the associated work groups,
other review bodies, and the APA Board of Trustees.
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Table 4. p Values of t tests performed to determine whether the mean suicidality score is the same as that 6 months and 1 day before
hospitalization

p Value of a t test p Value of a χ2 test

Time before/after hospitalization 6 months before 1 day before 6 months before 1 day before

6 months before – 8.60E-32** – 2.44E-201**

2 months before 2.87E-02 1.25E-21** 1.19e-03 3.34E-157**

1 month before 6.89E-02 5.21E-26** 9.35e-02 1.25E-149**

2 weeks before 5.39E-02 2.37E-25** 7.22e-02 1.3E-147**

1 week before 1.87E-03 8.63E-19** 1.84e-04* 3.91E-90**

3 days before 2.21E-04* 2.35E-14** 1.98e-06* 1.92E-96**

1 day before 8.60E-32** – 8.38e-50** –

1 day after 3.67E-04* 1.06E-59** 1.45e-05* 3.03E-155**

3 days after 1.30E-01 8.63E-84** 1.51e-03 1.32E-233**

1 week after 9.01E-02 5.18E-75** 2.08e-04* 6.3E-225**

2 weeks after 3.61E-02 6.64E-66** 2.71e-04* 4.43E-201**

1 month after 5.37E-02 4.59E-66** 5.56e-04* 4.48E-190**

2 months after 9.96E-02 1.62E-66** 6.51e-04* 5.37E-207**

6 months after 1.70E-01 3.18E-67** 1.30e-01 7.06E-175**

Given these current challenges with diagnoses in mental health, it might be interesting
to investigate the clinical phenotyping of patients with mental health disorders from a mathe-
matical standpoint. One can approach this problem in a multitude of ways. In this use case,
we have used principal component analysis (PCA) of the SA vector to investigate whether it
may be possible to tease out differences and similarities at a syndrome level.

A cohort comprising patients who have been diagnosed with a single diagnosis of either
MDD or schizophrenia4 is generated. At each visit, along with the SA, a CGI-S (Busner &
Targum, 2007) score is recorded. For each patient, the SA vectors corresponding to CGI-S
values more than 3 (i.e., more than moderately ill patients with relatively severe symptoms)
have been selected. Once this list of SA vectors is collected, a set of unique SA vectors is
obtained from this list, for both schizophrenia and MDD. The SA vectors are transformed using
PCA into their orthogonal primary components. This new space is orthogonal and continuous,
unlike the space spanned by the SAV, which is discrete and binary. It is much more promising
to find phenotype distributions in this continuous space rather than the original binary space
spanned by the SAV.

A three-dimensional representation of the distributions of schizophrenia and MDD is
shown in Figure 12. It can be seen that there are some regions where the two diagnoses are
separate, whereas in others, they overlap. This shows that the SA vector may be used to develop
clinical phenotypes and diagnoses with minimal overlap and can advance the diagnosis and
treatment of patients with mental health disorders.

4 Patients diagnosed with schizophrenia are those who have been diagnosed using one or more of the following
ICD codes: 295.10, 295.20, 295.30, 295.60, 295.90, and F20.9.
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Figure 12. A 3D density plot showing the densities of status assessment (SA) vectors for pa-
tients suffering from schizophrenia and major depressive disorder (MDD) after they have been
transformed with principal component analysis (PCA). In this plot, the first, second, and fourth
dimensions have been plotted along the x-, y-, and z-directions, respectively.

Using the SAV as an Input to ML Model

Finally, we demonstrate a simple use case where SA vectors can be utilized to train a multiclass
logistic regression model and generate longitudinal diagnoses for patients. Specifically, prob-
abilities of a selected patient having either schizophrenia, depression, or mania5 over multiple
days are predicted using the model with the patient’s longitudinal SA vector as inputs.

SAVs from approximately 200 patients each with schizophrenia, MDD, and mania are
selected to train a logistic regression model. A test set is isolated from the cohort using 20%
of the data:

a(m) = m · C + b (3)

pk =
exp (ak(m))

ΣK
j=1 exp(aj(m))

. (4)

The model is trained to minimize the cross-entropy loss between predictions (p = [p1, p2,
p3]) and patient diagnoses as recorded by the clinicians. For prediction, the likelihood for
each of the three diagnoses is generated based on the patient’s SA vector on that day, and
the diagnosis with the highest probability is used as the final prediction. Training and testing
accuracies during the training process are shown in Figure 13A.

5 Patients diagnosed with mania are those who have been diagnosed using one or more of the following
ICD codes: 296.10, 296.11, 296.12, 296.13, 296.14, 296.15, 296.16, F30.1, F30.10, F30.11, F30.12, F30.13,
F30.2, F30.3, F30.4, F30.8, or F30.9.
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Figure 13. An overview of training a simple machine-learning model for predicting whether a
person is suffering from depression, mania, or schizophrenia. A) Training and testing accuracy for
the linear model while training on the data over several epochs. A longitudinal symptom profile for
a selected patient with personal particulars is shown beside the plot: status assessments (SA) from
B) Day 1 in the light gray “manic period” and C) Day 212 in the dark gray “schizophrenic period.”
Factors are prefixed, with their category names embraced in parentheses, and signs of interest are
bolded.

For illustration, the longitudinal data of a patient diagnosed with schizophrenia are used.
The patient is an English-speaking, Black, single male who was 43 years old at the start of his
treatment. The probabilities of this person suffering from schizophrenia, depression, or mania
are plotted over multiple days in Figure 13B. Two diagnostic regions can be observed: one with
the highest probability of a manic diagnosis (light gray region) and the other with the highest
probability of schizophrenic diagnosis (dark gray region). Despite these discrepancies, the
patient was given a diagnosis of schizophrenia throughout. Selected SA signs for the manic
(Day 1) and schizophrenic (Day 212) periods are presented in Figure 13C and 13D, respec-
tively. Evident signs (shown in bold text), such as “(abnormal or psychotic thoughts) no hallu-
cinations, without hallucinations,” indicate that the patient is less likely to have schizophrenia,
while “(attention and concentration) distracted, inattentive” and “(mood) wonderful” suggest
symptoms of mania on Day 1. SA signs on Day 1 agree with the model prediction where a high
probability of mania is presented. On the other hand, key SA signs (shown in bold text) on
Day 212 lead to a diagnosis of mild schizophrenia, consistent with a moderate schizophrenia
probability, as predicted by the linear model.

To ascertain whether models are able to learn meaningful clinical information from the
given data, the top 10 factors increasing the likelihood of the predictions of schizophrenia,
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Table 5. A summary of the status assessment (SA) signs that positively and negatively affect the prediction of diagnosis from a multiclass logistic regression model

SA IDs affecting schizophrenia SA IDs affecting depression SA IDs affecting mania

Positively
correlated

Negatively
correlated

Positively
correlated

Negatively
correlated

Positively
correlated

Negatively
correlated

(ab. or psy. thou.)
ex. delusions/ab.
thou. (paranoia)

(ab. or psy. thou.)
no issues

(ab. or psy. thou.)
no issues

(ab. or psy. thou.)
ex. delusions/ab.
thou. (paranoia)

(mood)
declined

(association)
intact/no issues

(affect)
blunted/restricted

(sleep)
hypersomnia

(appearance)
positive grooming/
hygiene

(appearance)
issues with
grooming/hygiene

(suicidal) suicidal
ideation

(affect) no
issues/appropriate
affect

(ab. or psy. thou.)
ex. hallucinations
(visual)

(mood)
declined

(sensorium)
clouded; sedate

(affect)
blunted/restricted

(impulse control)
limited/some
issues

(attitude)
positive/appropriate

(homicidal)
present

(affect) loss of
energy/tiredness

(sleep)
neutral, unable to
categorize

(ab. or psy. thou.)
ex. hallucinations
(visual)

(affect)
expansive/overly
animated

(association)
declined

(memory)
neutral/unable to
categorize

(suicidal) suicidal
ideation with
means

(association)
declined

(association)
tangential

(suicidal)
suicidal ideation
with means

(attention/concentration)
issues due to MH

(appearance)
issues with grooming/
hygiene

(language)
issues with object
naming

(sleep)
hypersomnia

(sleep)
insomnia

(mood)
irritable, angry

(violent/homicidal)
present

(suicidal)
history of ideation

(attention/
concentration)
intact/no issues

(mood)
labile

(sleep)
maintenance issues
(can’t stay asleep)

(orientation)
general orientation
issues

(speech)
normal, no issues

(executive func.)
age appropriate

(suicidal)
history of self
injury

(executive func.)
impaired (due to other
MH issue)

(fund of knowledge)
above average

(mood)
misc. issues

(violent/homicidal)
neutral, unable to
categorize

(attention/concentration)
issues due to MH

(attitude)
neutral/unable to
categorize

(attention/concentration)
intact/no issues

(sensorium)
fluctuating

(fund of
knowledge)
positive
vocabulary

(affect)
blunted/restricted

(fund of knowledge)
above average

(sensorium)
neutral; unable to
categorize

(appearance)
positive behavior

(impulse control)
poor/serious issues

(mood)
depressed, sad,
despondent

(speech)
improved

Note. ab. = abnormal. ex. = experiencing. func. = functioning. MH = mental health. psy. = psychotic. thou. = thoughts.
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depression, and mania are presented in Table 5. As can be seen, important positive factors
contributing to the prediction of schizophrenia are “(abnormal or psychotic thoughts) experi-
encing delusions/abnormal thoughts (paranoia)” and “(abnormal or psychotic thoughts) experi-
encing hallucinations (visual).” On the other hand, negative factors indicating no schizophrenic
symptom include “(abnormal or psychotic thoughts) no issue,” “(mood) declined,” and other
factors indicative of the absence of psychosis or factors unrelated to the schizophrenic disorder.
Principal factors for depression and mania are properly recognized by the model as well.

DISCUSSION

The resulting NLP model is capable of generating SA vectors from categorized free text in the
SA into a numerical format. SA vectors can subsequently be used for further analytical and
ML tasks for clinical insights. As demonstrated in the previous section, even a simple logistic
regression model is able to reasonably reproduce the diagnosis of a patient directly from the
SA vector. This NLP model provides a new method for quantifying patient assessments and for
analyzing clinical outcomes.

As is evident from the results, some of the categories contain a significant number of
unique signs, stemming from the unstructured nature of the input. As one would suspect,
patient assessments recorded in the MSE text are meant to be descriptive. Comprehensive an-
notation of the MSE text for all signs requires significant human effort and may be impractical.
This serves as one of the limitations of the overall dataset used and the work presented here.
We have augmented the classification of signs using NLP and trained the models incremen-
tally. There is no easy way to increase the validation for some of the categories for them to be
comprehensive. This is evident in the fact that the precision, recall, and F1 scores of several
categories (especially in Group 2) are low. Since all deep learning algorithms learn largely
by example, the presence of unique descriptors presents a rather difficult challenge for any
learning algorithm to generalize to.

Given the evolving nature of psychiatric practice, it is entirely possible that new cate-
gories need to be added to the existing categories by clinicians. This may be achieved by user
interfaces (UIs) that allow clinicians to augment categories and factors as necessary; hence,
over time, new data will be generated that can be used for refining and augmenting existing
models. In case the ML classifies free text into an incorrect category, it would also be possible
for a clinician, given an intuitive UI, to update the classification. This will not only develop trust
between clinicians and the software but also allow the software to collect new data that can
be used for refining existing models. As this is typically handled at the software architecture
abstraction, it is beyond the scope of the current work.

One of the drawbacks of the SA vector is that the classification results in binary encod-
ings that lack any measurement of severity. For example, although two patients might have
“impaired to poor” reasoning abilities, the degree of impairment might be significant. Associ-
ating severity to free text, even from a human perspective, is a daunting task and fundamentally
subjective in nature. While adding a severity element to the categories will be highly useful,
the measures might be unreliable or have significant bias and variability in them. Hence we
have chosen to stay with a binary classification that might be less effective but more robust.

The current article has used pretrained word vectors from Google’s word2vec algorithms
along with the LSTM model with attention for the purposes of classification. Although this is a
fairly recent innovation, it is important to know that there are many other alternatives in each
aspect of the modeling. For example, word embeddings have been generated using Google’s
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pretrained word vectors. Alternatives to these are Global Vectors for Word Representation
(GloVe; Thomas et al., 2011) from Stanford and fastText (Bojanowski, Grave, Joulin, &Mikolov,
2017) from Facebook’s AI Research Lab, among others. All of these have been shown to be
marginally better than the others in different studies. However, they are typically all equally
viable as a source of pretrained word embeddings under most circumstances. It is also possible
to generate word embeddings directly from the given text. Unfortunately, most of the sentences
are only a few words long, and embeddings resulting from such sentences typically result in
subpar word embeddings and hence have not been attempted.

Pretrained embeddings capture the meanings of words in the most common contexts
in which they have been trained. In this particular case, Google’s word2vec model has been
trained on text obtained from Google News. The context of some of the medical terms within
this pretrained vector may not correspond to its colloquial meaning. For example, the words
“flooded” or “blunted” in common parlance have a very different meaning than they do in
psychiatry. The best way of improving this is to train new word vectors using clinicians’ notes.
Owing to our current inability to reliably anonymize clinicians’ notes, it is difficult to obtain a
good dataset on which this can be done. This shall be attempted in the future.

A potential problem of using pretrained word vectors is that it is unable to do word-
sense disambiguation. For example, the word “flooded” might be mentioned in two differ-
ent contexts and thus mean two different things in the same document. Since the meaning
of the word “flooded” is different in the two instances, the model ideally should be able to
identify to which word it is referring, based on the semantics of the sentence. However, this
semantic information is lost in pretrained word vectors. A more recent development in word
embeddings is Embeddings From Language Models (Gardner et al., 2018), which generates
word embeddings from a multilayer model. Currently, the state of the art in language models
are generalized language models, such as GPT (Radford, Narasimhan, Salimans, & Sutskever,
2018), BERT (Devlin et al., 2018; Vaswani et al., 2017), GPT-2 (Devlin et al., 2018; Vaswani
et al., 2017), and XLNet (Yang et al., 2019). These modern versions of NLP appear to be much
better than RNNs, and in future versions of this implementation, we may attempt to incorporate
these language models into the system.

Another possible place where the model might be improved is in named entity recogni-
tion (NER; Song, Jo, Park, Kim, & Kim, 2018) and coreference resolution (Stylianou & Vlahavas,
2019). Most of the expressions within the SA typically refer to observations about the patient.
Since the SA is free text, it is possible that some clinicians might wish to note down observa-
tions about a relative of the patient within the same note. After going through the free text that
is present within the SA, we have yet to find such a description. Hence NER and coreference
resolution have not been performed on this current dataset. However, if clinician’s notes are
to be used for NLP and information extraction, then this step would become fundamentally
important.

Similarly, unlike typical aspects of natural language, hypothetical sentences are generally
not present in the SA, which happens to be a dispassionate record of observations about the
patient. Again, if it is important to convert clinicians’ notes into a SA vector, it would be
important to identify hypothetical sentences and disregard themwhile generating the SA vector.

The following provides a brief overview of the process that might be used for extracting
the same type of information from unstructured notes. Unstructured notes contain a multi-
tude of information about the patient apart from the SA. This includes, and is not limited to,
the mental state of the patient that we call the SA; medications, including their doses and
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regimens; recordings of stressful and benevolent events in the patient’s life; recommenda-
tions for other forms of psychotherapy, such as cognitive behavioral therapy; records of recent
hospitalizations; concomitant recordings of caregivers; records of scores of psychiatric rating
scales, such as the CGI, the Global Assessment of Functioning (GAF), the Montgomery–Åsberg
Depression Rating Scale, the PANSS, the Work and Social Adjustment Scale, and the Patient
Health Questionnaire–9; and medication side effects and their effects on patients’ lives. A de-
tailed exposition of how all metrics might be extracted from clinicians’ free text is well beyond
the scope of this work. However, it might be possible to extract SA information from within
clinicians’ notes with the following algorithm:

1. Convert all of the clinicians’ notes into sentences.
2. Generate a group of sentences that contain SA information within them and another that

does not contain SA information. Furthermore, it would be helpful if the SA information
were further classified into different categories.

3. Train a Siamese network (Li et al., 2020) to group sentences into different SA categories.
4. For sentences in each category, request a SME to subcategorize each sentence into its

subcomponents (factors).
5. Finally, generate a set of models that will be able to classify which parts of an SAV are

associated with the current sentence.

A new clinician’s note would subsequently be processed by the following steps:

1. Perform sentence tokenization.
2. Assign sentences to probabilistic categories through the pretrained Siamese network

(along with a “NOT SA” class for the sentences that do not have SA information within
them).

3. Sentences that do belong to a particular class will subsequently be passed through the
pertinent NLP classifier to obtain the NLP-based subclasses.

Again, extracting information from clinicians’ notes is a significantly more complex problem
than extracting information from categorized free text.

Other than certain factors, such as “history of suicidal ideation,” most SAs are assumed
to be temporally bound to the time of the visit. It may be that the clinician, while describing the
patient, is describing the behavior of the patient at a different time. This has not been explicitly
incorporated into the current model and can be the basis for future improvements.

It is instructive to compare our classification method, which follows naturally from text
generated by clinicians through the EHR in a practice setting, with classifications present within
the RDoC (Cuthbert, 2014) in a deliberative manner. The RDoC divides neurobiological do-
mains into the following major groups: negative valence systems, positive valence systems,
cognitive systems, systems for social processes, and arousal/regulatory systems. It aims to
elicit and identify physical mechanisms and systems associated with behavior. On the other
hand, the SA is a summary of patient behavior.

It is interesting to see that some of the behaviors within the currently classified SA vector
can typically be classified into one of the major systems defined within the RDoC. For example,
within the system defined by cognitive systems in the RDoC, it is possible to incorporate large
portions of the SA vector belonging to the categories “attention and concentration,” “level of
consciousness,” “reasoning,” “abnormal or psychotic thoughts,” “sensorium,” “memory,” “lan-
guage,” “speech,” “executive functioning,” “impulse control,” and “psychomotor.” Similarly,

Computational Psychiatry 102



Quantification of the Mental State of Psychiatric Patients Mukherjee et al.

Table 6. A summary of systems that are available in the Research Domain Criterion (RDoC) and not present in the status assessment (SA)
vector

Category Subcategory

Systems for social process “imitation, theory of the mind”; “social dominance”; “facial expression
identification”; “attachment/separation fear”

Arousal/regulatory systems “arousal and regulation”; “resting state activity”

Negative valence systems “frustrative nonreward”

Positive valence systems “reward learning”; “habit”

other categories within the SA vector can be incorporated into other categories within the
RDoC. Hence many categories and factors of the current SA are present within the RDoC.
These specifically belong to the categories shown in Table 6.

On the other hand, certain behaviors within the SA vector are not amenable to incor-
poration within the categories of the RDoC. Examples of such categories are “homicidal,”
“suicidal,” and “violent thoughts.”

In the section “Suicidality Scale andHospitalization,” the suicidality of a patient has been
calculated from the SAV. At the end of that section, it was also mentioned that it is possible to
create similar scores for the positive and negative symptoms of schizophrenia. In fact, that is a
general method that can be used to study how particular aspects of a patient’s symptoms are
doing over time. In clinical psychiatry, treatment response, remission, and resistance are very
important topics (Elkis & Buckley, 2016; Pandarakalam, 2018), and a variety of psychometric
scales have been developed (Aboraya et al., 2018) to study them. However, very few are
used in real-world settings (Hatfield & Ogles, 2007), where clinicians prefer to track patients
through unstructured notes. Without needing to change clinical practice, the current work
can convert the notes into SA vectors that can then be mapped to the appropriate scales. This
may provide a quantitative way of measuring symptom severity of patients over time. This is
especially important when studying the comparative efficacy of different treatment strategies
from real-world data. The SAV can also be directly used to help enroll patients in clinical trials,
based on the prevalence of inclusion criteria and the absence of exclusion criteria defined for
a particular study.

Using methods similar to that shown in the section “Suicidality Scale and Hospitaliza-
tion,” it should be possible to prompt clinicians to use more structured data entry. For example,
if a score for mania is generated, a patient presently diagnosed with depression might show
signs of negative symptoms of schizophrenia. This can be used for prompting the clinician to
perform a rating on the negative symptom rating scale.

The section “Using the SAV as an Input to ML Model” describes a use case wherein
one is able to compute the probability that a patient is suffering from mania, depression, or
schizophrenia. It is to be noted that the symptoms and SAs overlap significantly across many
mental health disorders. Since most of psychiatric practice is based on syndromes, and syn-
dromes overlap to various degrees, diagnosis of a patient becomes rather difficult when the
patient’s symptoms match multiple syndromes and cannot be classified into a single diagnosis
based on the DSM-5 categories. For example, the criteria for MDD are based on a person
having five out of eight symptoms, as described in the DSM-5. Challenges with diagnosis
are exacerbated in cases where such syndrome-based classification becomes loosely defined,
as in the case of schizophrenia. This is where the SAV can make a significant contribution.
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Following the same principles of the use case in the section “Clinical Phenotyping,” we can
envision a day when the classification of mental health disorders is done in a way to min-
imize the overlap of symptoms based on the differences in the underlying pathology of the
disease. Improvement not only in the classification and identification of diagnosis but also in
the subcategorization of patients with the same diagnosis can help guide more effective treat-
ment strategies. As described before, the NLP-based generation of SAV from clinician notes,
SA, and so on can enable better targeting of treatment in the real world without requiring
significant changes in clinical practice.

CONCLUSION

In this article, a deep learning–based NLP has been used for generating a binary vector repre-
sentation of the symptoms and functional and emotional states of a psychiatric patient, given
the SA of the person. This is the first step in generating enriched longitudinal data of the symp-
toms and the mental state of patients from EHRs containing records of patients with mental
health disorders. This will allow quantitative comparison of outcomes of patients with mental
health disorders and, it is hoped, lead to more effective treatment strategies.
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