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ABSTRACT

Social and decision-making deficits are often the first symptoms of neuropsychiatric

disorders. In recent years, economic games, together with computational models of strategic

learning, have been increasingly applied to the characterization of individual differences in

social behavior, as well as their changes across time due to disease progression, treatment,

or other factors. At the same time, the high dimensionality of these data poses an important

challenge to statistical estimation of these models, potentially limiting the adoption of such

approaches in patients and special populations. We introduce a hierarchical Bayesian

implementation of a class of strategic learning models, experience-weighted attraction

(EWA), that is widely used in behavioral game theory. Importantly, this approach provides a

unified framework for capturing between- and within-participant variation, including changes

associated with disease progression, comorbidity, and treatment status. We show using

simulated data that our hierarchical Bayesian approach outperforms representative agent and

individual-level estimation methods that are commonly used in extant literature, with respect

to parameter estimation and uncertainty quantification. Furthermore, using an empirical

dataset, we demonstrate the value of our approach over competing methods with respect to

balancing model fit and complexity. Consistent with the success of hierarchical Bayesian

approaches in other areas of behavioral science, our hierarchical Bayesian EWA model

represents a powerful and flexible tool to apply to a wide range of behavioral paradigms for

studying the interplay between complex human behavior and biological factors.

INTRODUCTION

Changes in social behavior and decision-making are often among the first symptoms of neu-

ropsychiatric disorders. However, unlike disturbances in memory, emotion, or language that

are readily recognized as symptoms of more serious underlying neuropsychiatric conditions,

social and decision-making deficits are often overlooked. In younger patients with frontotem-

poral dementia, a debilitating neurodegenerative disease whose first symptoms frequently in-

clude social dysfunction, one series found a delay of greater than 6 years between symptom

onset and diagnosis (Van Vliet et al., 2013). Furthermore, even when social impairments are

recognized, there exist fewer behavioral measures or biomarkers to quantify such deficits, due
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in part to our limited knowledge of underlying neural mechanisms and their relation to mental

disorders.

In recent years, there has been increasing application of economic games, together with

computational models of strategic learning, to characterize social decision-making as well as

its underlying neural mechanisms. For example, such computational approaches have been

used to investigate the maintenance of cooperation in patients with borderline personality

disorder (King-Casas et al., 2008) and the influence of depressive symptomatology on learn-

ing from social rewards (Safra, Chevallier, & Palminteri, 2019). The essence of this approach

lies in the quantitative characterization of processes by which stimulus inputs drive behav-

ioral responses, thereby enabling the use of behavioral and neural data to rigorously test ex-

isting theories of brain function and to inspire the development of new theories (O’Doherty,

Hampton, & Kim, 2007).

One particularly notable example is the application of behavioral game-theoretic mod-

els to examine the biological underpinnings of strategic learning. Ample empirical evidence

shows that, in a competitive game, people adapt their behavior based on both (a) rewards

and punishments they receive themselves (i.e., reinforcement learning) and (b) actions of other

players (i.e., belief learning). These two learning rules are formally captured by the experience-

weighted attraction (EWA) model (Camerer & Ho, 1999). The EWA model provides a uni-

fied and flexible framework that allows for both effects, as well as differential weighting of

them. It is a highly successful learning model that has been shown to fit and predict empirical

data across a wide range of different games (Camerer, 2003; Camerer, Ho, & Chong, 2002;

Galla & Farmer, 2013; Ho, Camerer, & Chong, 2007). Using this model, existing studies have

identified the neural representation of key signals underlying strategic learning (Zhu,

Mathewson, & Hsu, 2012), as well as effects of biological factors, such as aging (Zhu, Walsh,

& Hsu, 2012), focal brain lesions (Zhu, Jiang, Scabini, Knight, & Hsu, 2019), psychiatric dis-

orders (Hunter, Meer, Gillan, Hsu, & Daw, 2019), and genetic polymorphisms (den Ouden

et al., 2013; Set et al., 2014), on learning behavior.

Despite being an attractive and versatile tool for the study of strategic learning, the EWA

model can pose challenges when fit to empirical data. Because of its complexity, parame-

ter estimation can be difficult for certain games and/or small samples (in terms of both the

number of subjects and the number of rounds per subject; Camerer, 2003, section 6.8). Typ-

ically, the EWA model is fit to data from a group of subjects under the assumption that the

model parameters are shared across everyone (i.e., the “representative agent” approach), us-

ing maximum-likelihood estimation. However, such an assumption of homogeneity does not

necessarily hold in reality, especially in clinical populations, and it precludes the possibility

of examining and explaining individual-level variability in the model parameters. More im-

portantly, this approach prevents the investigation of the ways in which differences in model

parameters may relate to demographic or biological factors or may arise from experimental

interventions (e.g., pharmacological manipulations or noninvasive brain stimulation). In ne-

glecting these questions of great significance in clinical and translational neuroscience, the

“representative agent” approach has other methodological implications for the EWA model.

Because of the assumption of shared parameters, the belief learning component of the model

can fail to pick up idiosyncratic parameter information in individual participants’ past choice

sequences (Wilcox, 2006), and the resulting group parameter fits can therefore show a mis-

leading bias toward reinforcement learning relative to belief learning.

Some exceptions to this “representative agent” approach exist in the economics litera-

ture with certain experimental designs, allowing heterogeneity by estimating the EWA model

at the individual or session level (Ho, Wang, & Camerer, 2007; Qi, Ma, Jia, & Wang, 2015).
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Importantly, these studies highlight that heterogeneity in the EWAmodel parameters is nonneg-

ligible, consistent with results from other learning models (Cheung & Friedman, 1997). Fitting

the EWAmodels at the individual level, however, is generally unsuitable for neuroscience stud-

ies because the small effect sizes typical of biological factors are easily buried in the relatively

large noise seen in the individual-level data. In turn, this issue is often exacerbated by limited

sample sizes due to practical constraints, such as the relative inaccessibility of some patient

groups and the expense and time needed to recruit and study them. Furthermore, treating the

participants or sessions as if they are independent may fail to fully utilize the structure of the

sample (e.g., a within-subject repeated measures design) where correlations between param-

eters of different individuals or experimental sessions are expected and, therefore, pooling of

information is appropriate.

In this article, we introduce a hierarchical Bayesian EWAmodel that includes participant-

and session-specific model parameters, allowing for the ability to quantify variability across all

parameters, to determine if there are consistent and measurable trends in the parameters as a

function of participant- and session-level explanatory variables and to account for correlation

that may arise from the same individual participating in multiple sessions, potentially under

different sets of experimental conditions. The hierarchical framework allows for data-driven

sharing of information among groups of parameters, leading to stability when attempting to es-

timate many parameters with potentially sparse data. In addition, our hierarchical EWA model

reduces to the traditional EWA model (i.e., parameters shared across all participants) when the

participant- and session-level explanatory variables are not predictive of the parameter values

or no variability exists among the different groups of parameters.

Our model presents several important extensions to a recent hierarchical Bayesian analy-

sis package (Ahn, Haines, & Zhang, 2017) that includes a specific implementation of the EWA

model (for the probabilistic reversal learning task; Cools, Clark, Owen, & Robbins, 2002;

den Ouden et al., 2013). Such extensions are particularly important given the increasingly

complex experimental designs used in studies in computational psychiatry and related fields.

First, our implementation allows for any arbitrary normal-form game structure (i.e., available

strategies of both parties and the payoff matrix) and therefore can be applied to a very wide

range of studies on strategic learning. It also naturally allows for the inclusion of covariates

within a single framework, rather than analyzing and comparing different subgroups by re-

peated fittings of the model. Furthermore, our model addresses intraparticipant correlation

and correlation between model parameters. Accounting for these features of the data can

lead to more accurate assessment of parameter variability and improved understanding of the

impact of covariates. More broadly, such an approach echoes the growing popularity of hierar-

chical Bayesian analyses in cognitive neuroscience and computational psychiatry (Ahn et al.,

2017; Ahn, Krawitz, Kim, Busemeyer, & Brown, 2013; Ly et al., 2017; Piray, Dezfouli, Heskes,

Frank, & Daw, 2019; Shiffrin, Lee, Kim, &Wagenmakers, 2008; Wiecki, Sofer, & Frank, 2013).

We test and illustrate the use of the newly developed model by examining its perfor-

mance against current benchmark approaches on the patent race game (Rapoport & Amaldoss,

2000), a game-theoretic paradigm previously used in conjunction with the EWA model (Set

et al., 2014; Zhu et al., 2019; Zhu, Mathewson, & Hsu, 2012; Zhu, Walsh, & Hsu, 2012), in

both an empirical dataset and simulated data. In the data application, the model finds substan-

tial evidence of a role effect (i.e., weak vs. strong), large variability in participant- and session-

specific parameters, and high correlation between sets of parameters associated with the same

participant. These findings highlight the need to account for such variability and correlations

during modeling. The proposed model outperforms the alternative estimation approaches in
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providing the best balance of model fit and complexity. The advantages of the proposed model

are further corroborated by a simulation study, which shows that the model has the best pa-

rameter estimation in scenarios with and without participant- and session-level variability in

comparison with the existing approaches.

METHODS

Data Description

Overview We illustrate the features of our proposed hierarchical Bayesian EWA model via

an empirical dataset from a behavioral study on human participants. In this study, partici-

pants played a strategic learning game (the Patent Race game) twice, on two separate days.

Importantly, the within-subject design calls for the need to capture correlation between a par-

ticipant’s parameters across multiple sessions while at the same time allowing variability in the

parameters across participants and sessions.

Participants A total of 42 (28 female) healthy participants (i.e., without a history of neuro-

logical or psychiatric illnesses) were recruited from the University of California, Berkeley and

nearby communities. All participants gave written informed consent in accordance with the

Committee for the Protection of Human Subjects at the University of California, San Francisco

and University of California, Berkeley. The mean age was 22.3 years (SD 5.9 years, range 18–

47 years); ethnicity varied, including 7 Caucasian, 1 African American, 8 Hispanic, 21 Asian,

and 5 mixed-ethnicity participants.

Procedure During their first visit, participants underwent a medical history and physical

exam. Subsequently, participants underwent two visits, during which they performed the same

set of experimental tasks. At each visit, participants received task instructions for the Patent

Race game and a number of other behavioral tasks. Participants underwent a functional neu-

roimaging session and then a behavioral session. During the latter, participants performed a

series of behavioral tasks, including the Patent Race task. Only data related to the Patent Race

task are reported in this article. Participants were informed that their payments would be based

on one trial randomly selected from the set of choices carried out in each session of the Patent

Race game as well as their performance in the other tasks.

Patent Race Game Prior to the experimental sessions, subjects were given instructions and

completed a quiz to ensure comprehension of the game. In the Patent Race, players were

matched at random at the beginning of each round and competed for a prize by choosing an

investment from their respective endowments. The player who invested more won the prize,

and the other lost. In the event of a tie, both lost the prize. Regardless of the outcome, players

lost the amount that they invested (Figure 1). In the particular payoff structure we used, the

prize was worth 10 units, and the strong (weak) player was endowed with 5 (4) units. Both

players were aware of their opponent’s endowment size.

To overcome logistical difficulties of conducting simultaneous experiments with upward

of 14 subjects for each behavioral subject, and to minimize unobserved session effects in

opponent play associated with such a protocol, we matched subjects with choices from a

pool of players who previously participated in behavioral sessions. Importantly, subjects were

informed that they played in the same sequence as the pool players. That is, if the behavioral

subject was playing in Round 60, the choice of opponent was drawn randomly from Round

60 of one of the pool players. Comparisons between “live” sessions and “nonlive” sessions
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Figure 1. Patent Race game. A) After a fixation screen, subjects were presented with the Patent Race game, with information regarding their
endowment, the endowment of the opponent, and the potential prize. B) Subjects input the decision (self-paced) by pressing a button mapped
to the desired investment amount from the initial endowment. C) After 2–6 s, the opponent’s choice was revealed. If the subject’s investment
was strictly more than those of the opponent, the subject won the prize; otherwise, the subject lost the prize. In either case, the subject kept
the portion of the endowment not invested.

have shown that behavior of young adults does not differ significantly across settings (Zhu,

Mathewson, & Hsu, 2012).

Hierarchical Experience-Weighted Attraction Model

Formally, the EWA model assumes that, in each round of a game, the player assigns a value

(“attraction”) to each strategy in the set of possible strategies. Before the game starts, they are

assumed to hold certain prior beliefs about the values of the strategies, reflecting the result of

either logical deduction or previous experience. The updating of the values throughout the

course of the game is then governed by three parameters, which capture qualitatively distinct

aspects of the learning process, as discussed by Camerer & Ho (1999). Two parameters, ρ and

φ, control the updating of pregame prior beliefs and of in-game experiences, respectively. The

third parameter, δ, captures the weight between reinforcement and belief learning. The model

reduces to pure reinforcement learning when δ = 0 and to pure belief learning when δ = 1.

Finally, latent values are converted to choice probabilities in each round by a softmax rule, with

an additional parameter λ that indicates the player’s sensitivity to differences in latent values

or rewards. These parameters allow quantitative inferences to be made about distinct aspects

of strategic learning and decision-making. Identification/estimation of these parameters also

allows other learning-related latent variables to be derived (e.g., trial-by-trial prediction errors;

Zhu, Mathewson, & Hsu, 2012), which is vital for characterizing the neural encoding of these

signals.

We introduce the hierarchical Bayesian EWA model under the assumption that each

study participant plays multiple sessions of games, possibly under different experimental con-

ditions (but not necessarily). We denote the investment made by participant i during game t

of session j as Yij(t). Based on the role assigned to participant i during session j, rij, he or

she is free to choose from either five (weak role, rij = 0) or six (strong role, rij = 1) investment

options during each game of that session. We model person i’s investment choice during game

t of session j as a function of unknown participant- and session-specific parameters, the in-

vestments made by player i during the previous rounds of play (1, . . . , t − 1), and additional

explanatory variables (including opponent investments during the first t − 1 games) such that

Yij(t)|δij, λij, φij, ρij, Yij(1), . . . , Yij (t − 1)
ind
∼ Categorical

{

pij(t)
}
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for i = 1, . . . , n (number of participants), j = 1, . . . , s (number of sessions), and t = 1, . . . , g

(number of games in each session). We make the assumption that each player participates in

the same number of games in each session and the same number of sessions, but this can be

relaxed without additional complexity.

The vector of probabilities corresponding to each possible investment option for player

i during game t of session j, pij(t), is given as

pij(t) =

{

{

pij0(t), . . . , pij4(t)
}T

if rij = 0
{

pij0(t), . . . , pij4(t), pij5(t)
}T

if rij = 1,

where pijk(t) is the probability of participant i investing amount k during game t of session j.

Using the standard EWA modeling framework, we define this probability such that

pijk(t) =
exp

{

λijVijk (t − 1)
}

∑
mij

l=0 exp
{

λijVijl (t − 1)
} ,

where mij = 4 + rij (i.e., weak vs. strong role). The Vijk(t) function represents player i’s at-

traction of strategy k during session j after game t occurs. In the context of the EWA model,

attractions are real numbers monotonically related to the probability of a strategy being cho-

sen, resembling utility. As in the original EWA model (Camerer & Ho, 1999), Vijk(t) is defined

recursively as

φijNij (t − 1)Vijk (t − 1) +
[

δij +
(

1 − δij

)

I
{

Yij(t) = k
}]

π
{

k, Y∗
ij(t)

}

Nij(t)

for t ≥ 1, where Y∗
ij(t) represents the game t, session j investment made by the opponent of

player i (assumed known) and I(.) is the indicator function, which is equal to 1 when the

input statement is true and to 0 otherwise. The Nij(t) function represents the “experience

weight,” which is the number of “observation-equivalents” of past experience, and is also

defined recursively such that

Nij(t) = ρijNij (t − 1) + 1

for t ≥ 1. Importantly, both attractions Vijk(t) and experience weights Nij(t) start with prior

values Vijk(0) and Nij(0), which reflect pregame experience or belief. The π
{

k, Y∗
ij(t)

}

func-

tion represents the scalar-valued payoff that is received by participant i given his or her own

investment and the opponent’s investment in this round and is defined such that

π
{

k, Y∗
ij(t)

}

= 4 + rij + qI
{

k > Y∗
ij(t)

}

− k,

where q represents the selected award amount (10 in the case of this study).

Parameter-Level Models

The traditional EWA approach assumes that the introduced unknown model parameters are

constant across participant and session such that δij ≡ δ ∈ (0, 1), λij ≡ λ > 0, φij ≡ φ ∈ (0, 1),

and ρij ≡ ρ ∈ (0, 1) for all i and j. However, in our specification of the model, we allow for

a more general and flexible framework that includes the original reduced form as a special

case. We introduce parameter-specific regression models that aim to quantify variability in the

parameters across participant and session, to determine correlation between a participant’s set
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of parameters across different sessions, and to characterize the associations between parameter

values and participant- and session-specific explanatory variables.

The general form of the regression model (shown here for δij) is given as

qδ

(

δij

)

= xTi βδ + zTijγ
δ + θδ

i + ǫδ
ij, ǫδ

ij|σ
2δ
ǫ

iid
∼ N

(

0, σ2δ
ǫ

)

, (1)

where qδ(.) is a link function that transforms the parameter to have support on the real line (i.e.,

qφ(.) = qδ(.) = qρ(.) = logit(.); qλ(.) = ln(.)); xi is a vector of explanatory variables specific

to participant i (not changing across session), including an intercept term, and βδ is the vector

of corresponding regression parameters; θδ
i is the participant-level random effect that accounts

for correlation between sessions played by the same person (person i plays s > 1 sessions); zij

is the vector of participant- and session-specific explanatory variables (e.g., treatment status,

weak/strong role) and γδ is the vector of corresponding regression parameters; and σ2δ
ǫ de-

scribes the amount of variability in the parameter values after accounting for the explanatory

variables and correlation within a participant. To make group comparisons for the different pa-

rameters, additional grouping variables could be included in the xi and zij vectors; posterior

inference for the corresponding regression parameters would indicate whether the differences

were significant.

The vector of random effect parameters specific to participant i, θi =
(

θδ
i , θλ

i , θ
φ
i , θ

ρ
i

)T
, is

modeled to account for cross correlation between the different parameters corresponding to the

same participant such that θi|Σ
iid
∼ MVN (04, Σ), whereMVN (04, Σ) represents the multivariate

normal distribution with mean vector equal to 04 (a vector of length 4 with all entries equal to

0) and variance/covariance matrix Σ, which describes the correlation between parameters.

Prior Distributions

To complete the model specification, we assign weakly informative prior distributions to the in-

troduced model hyperparameters such that βδ
j , βλ

j , β
φ
j , β

ρ
j
iid
∼ N

(

0, 1002
)

, j = 1, . . . , px, where

px is the length of the xi vector; γδ
j , γλ

j , γ
φ
j , γ

ρ
j
iid
∼ N

(

0, 1002
)

, j = 1, . . . , pz, where pz is the

length of the zi vector; σδ
ǫ , σλ

ǫ , σ
φ
ǫ , σ

ρ
ǫ

iid
∼ Uniform(0, 1000); and Σ−1 ∼ Wishart (I45) (I4 rep-

resents the 4 × 4 identity matrix), allowing for marginally uniform prior correlation between

each parameter (Gelman et al., 2013).

Model Fitting

Initial values for Vijk(0) and Nij(0) are required prior to model fitting due to their recursive

definitions. Owing to the added computational complexity that would be involved by treating

them as free parameters to be estimated, we adopt the following simplifications in accordance

with established practices in the literature (Ho, Camerer, & Chong, 2007; Zhu, Mathewson,

& Hsu, 2012): (a) The Vijk(0) values are determined with a maximum-likelihood estimation

procedure using data collected in the five initial rounds from all players sharing the same role

and session and (b) Nij(0) are all set to 1. For the first simplification, the underlying assumption

is that the initial attractions are the same among players of the same role and in the same

session. Allowing different initial attractions for players of different roles is necessary because

they have a different number of available strategies and different starting endowments. Because

of the within-subject design, playing the game in the second session (albeit in a different role)

could involve using insights from the first session to form beliefs about the attractions of the

strategies. The rationale for the second simplification is that Nij(0) = 1 corresponds to a weak
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prior belief in the initial attractions in the Bayesian sense (Ho, Camerer, & Chong, 2007).

This also ensures that any effect of the initial attractions Vijk(0) will quickly dissipate, and

therefore the initialization of the attractions would not violate the general approach focusing on

uncovering individual differences. We note that the estimation and subsequent specification of

the initial attractions are exogenous to the hierarchical model and done prior to model fitting.

To implement the method, we take advantage of the equivalent closed forms for Nij(t)

and Vijk(t), where

Nij(t) = ρt
ijNij(0) +

1 − ρt
ij

1 − ρij

and

Vijk(t) =
φt

ijVijk(0)Nij(0) + ∑
t
l=1 fijk(l)φ

t−l
ij

Nij(t)

for t ≥ 0, where

fijk(t) =
[

δij +
(

1 − δij

)

I
{

Yij(t) = k
}]

π
{

k, Y∗
ij(t)

}

.

DATA APPLICATION

We omit the first five games from each session for each participant to remove any effect of prior

beliefs of the participants from the analyses. The participant-level explanatory variables (xi)

include age and sex, while the participant/session-level variables (zij) include the weak/strong

role indicator and the session indicator (1 or 2). All models are run for 500,000 iterations, using

two independently initialized chains, after removing the first 100,000 iterations as a burn-in

period prior to convergence. We thin the 500,000 posterior samples by 50 to reduce posterior

autocorrelation, resulting in 20,000 nearly independent posterior samples with which to make

inference (10,000 from each chain). Model convergence was assessed using the Geweke di-

agnostic (Geweke, 1991) and visual inspection of traceplots for each model parameter. The

effective sample size was calculated to ensure that an adequate number of posterior samples

was collected to make accurate inference. Posterior means, standard deviations, and quantiles

are presented for all parameters of interest.

In Figure 2, we present the individual- and session-specific posterior means for each set of

parameters (δij, λij, φij, ρij for all i and j). Clearly there is substantial variability in the parameter

estimates across these factors. To explain why some of this variability is present, we present

posterior inference for the different exploratory variables in Table 1. The weak/strong role

indicator is consistently an important predictor of each of the parameters. Those participants

in the strong role have smaller λ, φ, and ρ values on average than those in the weak role, while

those in the weak role have a larger δ value. This indicates that players in the strong role are

less sensitive to attraction differences between strategies and update their beliefs faster (i.e.,

more responsive to outcomes of recent rounds). With respect to differences due to session,

there is no indication of a significant session effect on any parameter, as the 95% quantile-

based credible intervals for all parameters include one. No other explanatory variables were

shown to be important predictors of the parameters.

In Table 2, we display the posterior means and indicators of uncertainty for the entries

of Σ, converted from raw covariances to correlations (i.e., corrij = Σij/
√

ΣiiΣjj) for improved

interpretation. Both φ and ρ are highly negatively correlated with δ, while φ and ρ are almost

perfectly correlated. Accounting for this correlation is important during parameter estimation
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Figure 2. Histogram of posterior means of the participant- and session-level parameters (δij, λij,
φij, ρij for all i and j) from the full model with posterior means of the parameters from the

shared parameter model (δ, λ, φ, ρ) indicated with the red dashed line. The average posterior
standard deviations (averaged across all participants and sessions) corresponding to each grouping
of parameters is δ 0.12, λ: 0.17, φ: 0.05, ρ: 0.08.

in order to correctly quantify uncertainty in the estimates and make accurate posterior

inference.

It is worth noting that these observations are consistent with previous studies from both

empirical and theoretical standpoints. The strong correlation between φ and ρ likely arises from

the fact that they capture common cognitive phenomena, such as forgetting and discounting

old experience (Camerer & Ho, 1999). In the special case of φ = ρ, where the past attractions

Vijk(t) and the experience measure N(t) are depreciated at the same rate, attractions will be

kept in a range bounded by the game’s payoffs. The negative correlations between φ and δ

and between ρ and δ may reflect a balance between discounting past experiences and the

attention paid to other strategies (Ho, Camerer, & Chong, 2007). Intuitively, early in a game,

or when there is a sudden strategy shift by the opponent, the model should put more weight

on belief learning and the fictitious options (i.e., higher δ) and, at the same time, depreciate

irrelevant past history faster (i.e., lower ρ and φ). On the contrary, as equilibration occurs, the
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Table 1. Posterior inference for the data application presented on the odds ratio (δ, φ, ρ) and relative risk (λ) scales

Posterior quantile

Effect Parameter Mean (SD) 0.025 0.500 0.975

Age (years) δ 0.87 (0.23) 0.47 0.85 1.38

λ 1.06 (0.07) 0.93 1.06 1.21

φ 2.38 (1.93) 0.64 1.81 7.77

ρ 2.25 (1.45) 0.81 1.86 6.44

Male vs. female δ 1.81 (1.07) 0.57 1.58 4.41

λ 0.90 (0.13) 0.66 0.89 1.19

φ 8.15 (11.62) 0.61 4.60 39.24

ρ 3.68 (3.64) 0.42 2.47 13.61

Session: 1 vs. 2 δ 1.15 (0.43) 0.52 1.08 2.18

λ 1.16 (0.10) 0.96 1.16 1.37

φ 0.65 (0.19) 0.36 0.63 1.08

ρ 0.76 (0.22) 0.39 0.75 1.25

Strong vs. weak role δa 4.67 (2.18) 2.10 4.18 10.23

λa 0.50 (0.05) 0.42 0.50 0.60

φa 0.26 (0.08) 0.14 0.25 0.44

ρa 0.30 (0.09) 0.15 0.29 0.52

Note. a95% credible interval excludes 0.

Table 2. Posterior inference for the variance/covariance matrix, converted to the correlation scale

Parameter δ λ φ ρ

δ 1.00 −0.09 −0.65a −0.68a

λ 1.00 0.07 0.16

φ 1.00 0.97a

ρ 1.00

Note. a95% credible interval does not include zero. The credible intervals for the diagonal

elements all exclude zero by definition since they are equal to one.

model could conserve cognitive resources by attending to fewer fictitious payoffs (low δ) and

keeping a longer window of history (high ρ and φ). While this notion remains to be further

investigated, a recent study has revealed evidence for constraints for cognitive resources (e.g.,

working memory) on reinforcement learning (Collins, 2018).

MODEL COMPARISONS

We compare the newly developed model with two competing options to provide insight into

the benefits of considering variability in the parameters across person/session, sharing infor-

mation across parameters during estimation, and the use of correlated random effects. To more

formally compare the results from the competing models, we use a Bayesian model selection

technique known as the Watanabe–Akaike information criterion (WAIC) (Watanabe, 2010).
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WAIC describes the performance of a model as the sum of two components, one represent-

ing model fit and one representing complexity (i.e., effective number of parameters), where

smaller values of WAIC indicate better models. Preference is given to models that fit the data

well while also being relatively less complex than other options. The two competing models

are the (a) shared parameter model and the (b) unique participant/session parameter model.

The shared parameter model represents the belief that the model parameters are shared across

all participants/sessions where δij ≡ δ, λij ≡ λ, φij ≡ φ, and ρij ≡ ρ for all i and j. Therefore,

no parameter-level regressions are introduced, and only four parameters are used to describe

the variability in the data. While this model is a parsimonious option, we expect it to struggle

greatly with respect to model fit due to a lack of flexibility and rigid assumptions regarding

variability between participant- and session-level parameters.

The unique parameter model represents the opposite extreme compared to the shared

parameter model where all participant- and session-level model parameters are estimated in-

dividually. In the unique parameter model, we do not include the regression framework in

Equation 1 because covariates are not considered during estimation. Similarly, correlation be-

tween parameters is also ignored. While we use all of the data from every participant and

session to fit the model, the parameters are specific to each participant and session and do not

influence each other during estimation. We achieve this by specifying independent, weakly

informative prior distributions to all model parameters such that

δij, φij, ρij
iid
∼ Uniform(0, 1)

λij
iid
∼ Gamma(0.01, 0.01)

for all i and j. This model is muchmore flexible than the shared parameter model but may result

in computational problems during model fitting due to the lack of information sharing across

participant- and session-level parameters. As a result, this could impact the ability of the unique

parameter model to produce quality parameter estimates and measures of uncertainty. Both

of the competing models are applied to the application dataset using the previously described

model-fitting specifications.

Results

The WAIC results (and effective number of parameters) for the shared parameter, unique pa-

rameter, and full models are 14,359 (6), 13,441 (318), and 13,362 (219), respectively. The

shared parameter model clearly struggles to describe the variability in the data well since it

uses so few parameters. The remaining models offer substantial improvements due to their

increased flexibility. The full model offers the best balance between model fit and complexity

among all considered models, indicating the importance of incorporating regression modeling

and the cross correlation between parameters during parameter estimation.

To further compare the competing models with the full model, we created Figure 3,

which contains scatterplots of posterior mean estimates for each set of parameters (δij, λij, φij,

and ρij for all i and j) between the unique parameter model and the full model. Since the

shared parameter model does not allow for participant- and session-specific parameters, we

simply make note of the single parameter posterior mean estimate in each plot for compari-

son purposes. We also display the posterior mean values from the shared parameter model in

Figure 2 for reference. Figure 3 suggests some large differences in parameter estimation be-

tween the unique parameter and full models, while WAIC suggests that the full model results

may be most reliable.
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Figure 3. Scatterplot of the posterior mean estimates for the participant- and session-level pa-
rameters from the full model and the unique parameter model. The asterisk indicates the corre-
sponding posterior mean estimated from the shared parameter model.

SIMULATED DATA

While the results on the empirical dataset strongly demonstrate the capacity of our proposed

model to parsimoniously uncover heterogeneity in, and correlations between, parameters, it

remains uncertain how accurate the results are, as the “true” parameters are unknown. To

address this question, we simulate two datasets from the EWA model in which the model pa-

rameters are known, allowing us to more formally compare the performances of the competing

models. Importantly, we leverage results from the data application described previously, so that

the true parameters used in the simulations are ecologically realistic. First, we simulate data

from the shared parameter model such that there are only four unknown parameters in the

model. We set the values of these parameters as the posterior means obtained after fitting the

shared parameter model to the application dataset. Additionally, we use other features from

this dataset directly when simulating data [e.g., sample sizes, Y∗
ij(t)]. Next, we simulate data

from the EWA model to include person- and session-level variability in the parameter values

(i.e., four unique parameters for each participant and session combination). We use the pos-

terior means of these parameters obtained by fitting the full model to the application dataset

to set these values.
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Using these two simulated datasets, we fit each of the competing models and estimate

the model parameters specific to each participant and session. The model-fitting details match

those from the third section, with the only difference being that one chain was used instead of

two. Additionally, owing to computational constraints, only 250,000 posterior samples were

collected from the unique parameter model in the analysis of the dataset, with no variability in

the model parameters. For each method, we calculate the average mean absolute error (MAE)

and average credible interval coverage (averaged over participants and sessions) for each set of

parameters to determine which method produces estimates with reduced MAE and adequate

measure of uncertainty. The average credible interval coverage is expected to be near 95% if

the model is working well. We also calculate WAIC and the effective number of parameters

for each model fit.

Results

The results are displayed in Table 3 and Figures 4–6. For the dataset without participant-

and session-level variability, the full model performs well in terms of MAE with respect to the

unique parameter model, while the shared parameter model (the data-generating model) is

clearly best. The struggles of the unique parameter model are likely due to the estimation

instability when information is not shared across sessions and parameters. For the dataset

with variability in all parameters, the shared parameter model now struggles in terms of MAE

and coverage across all parameters. The unique parameter model again has large MAE and low

coverage for some of the parameters. The full model performs well overall, with adequate cov-

erage and reduced MAE compared to the other models. WAIC is able to select the appropri-

ate model for each simulated dataset. Overall, the full model performs well in both extreme

settings (with and without variability), while the unique parameter model is generally not rec-

ommended in either setting.

We further unpack these observations by more granular visualizations of the simulation

results. Figure 4 presents true versus estimated participant- and session-specific parameters

by all three models of the dataset without variability. It is clear that when the true parameter

does not have variability, the full model estimates fairly tight participant- and session-specific

fits that are centered around the true parameter values. This indicates that the full model

is able to largely reduce back to the traditional shared parameter model when little or no

variability exists in the dataset and still generate accurate parameter estimates. By contrast, the

unique parameter model produces fits that are not only much higher in absolute error but also

Table 3. Simulation study results

Variability Model δ λ φ ρ WAIC (EP)

No Shared 0.00 (1.00) 0.90 (1.00) 0.75 (1.00) 0.60 (1.00) 12,471 (4)

Unique 13.27 (1.00) 53.84 (0.70) 17.14 (0.94) 34.02 (0.88) 13,012 (209)

Full 5.23 (1.00) 9.61 (1.00) 1.51 (1.00) 3.01 (1.00) 12,814 (105)

Yes Shared 19.05 (0.14) 27.74 (0.33) 14.73 (0.04) 18.16 (0.05) 12,839 (5)

Unique 10.35 (1.00) 41.16 (0.83) 10.59 (0.83) 31.82 (0.68) 11,537 (234)

Full 7.31 (1.00) 10.81 (0.98) 3.12 (0.95) 5.87 (0.94) 11,350 (141)

Note. Average mean absolute error across all participant- and session-level parameters is displayed with average coverage of the

95% credible intervals given in parentheses. Estimates of mean absolute error are multiplied by 100 for presentation purposes. EP =

effective number of parameters.
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Figure 4. Histograms of posterior means of the participant- and session-level parameters (δij,
λij, φij, ρij for all i and j) obtained from fitting the different models on the simulated dataset

with no variability. True values of the parameters for generating this simulated dataset (δ, λ, φ, ρ)
are indicated by the black dashed lines.

heavily biased in certain cases, likely due to the instability of fitting on individual participants or

sessions. Figure 5 presents the same information for the dataset with variability. Here the shared

parameter model performs poorly, as expected, and the full model still outperforms the unique

parameter model by being much less vulnerable to boundary fits, especially for estimation of

φ and ρ, which again confirms the advantage of the shrinkage provided by the hierarchical

approach. The superior coefficient of determination (R2) values from the full model compared
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Figure 5. True versus estimated (posterior means) participant- and session-level parameters (δij,
λij, φij, ρij for all i and j) obtained from fitting the different models on the simulated dataset with

variability. The identity line (y = x), which indicates the ideal situation where estimated parameters
are exactly the same as true parameters, is shown in blue. R2 = coefficient of determination.

with the shared parameter and unique parameter models (Figure 5) reiterate the substantial

improvement in accuracy in the full model compared with the other models noted earlier.

We highlight another important feature of our model, the session effect on the parameters

within participants, in Figure 6. Here we focus on the change in the same parameter in the same

participant across two sessions and examine howwell different models are able to recover such

changes. This is a crucial test of the model, especially in the context of potential applications

of this model to studies involving experimental manipulations or naturally occurring changes

in behavior over time (e.g., aging or disease progression). Models that struggle in estimating
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Figure 6. True versus estimated session effects (i.e., differences of posterior means) on param-
eters (δij, λij, φij, ρij for all i) between the two sessions obtained from fitting either the unique

parameter model or the full model on the simulated dataset with variability. The identity line
(y = x), which indicates the ideal situation where estimated session effects are exactly the same as
true session effects, is shown in blue. R2 = coefficient of determination.

the session effects will risk misidentifying such session effects. Because the shared parameter

model does not allow for any variability, the comparison is focused on the full model and

unique parameter model. Again, the full model performs substantially better in preserving the

session effects on parameters, especially for λ, φ, and ρ.
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DISCUSSION

Using a hierarchical Bayesian EWA model permits the investigation of variability in key pa-

rameters across participant and session, the testing of possible associations between parameter

values and explanatory variables, and the evaluation of correlations arising due to repeated

sessions played by the same participant. Importantly, all of these factors can be flexibly adapted

to reflect different specific research questions and experimental designs. The application of our

proposed model can lead to a more complete understanding of how experimental factors im-

pact game-play decisions and learning strategies, while ensuring that statistical inference is

accurate. Our proposed method is completely data driven, as we generally favor weakly infor-

mative prior distributions so that our prior beliefs do not impact the final results. Of course, mo-

tivating the development of a model with the preceding characteristics is the potential for this

approach to be applied to translational and clinical neuroscience studies, in which measuring

and understanding individual variability are intrinsic to questions of diagnosis and treatment.

Through a within-subject multisession dataset, we have demonstrated that our proposed

model outperforms the conventional representative agent approach by providing a more ac-

curate and fine-grained fit of behavior while still minimizing model complexity. This result is

achieved by fitting individual and group parameters simultaneously so that they mutually con-

strain each other and by incorporating cross-parameter correlations due to the within-subject

nature of the study. Such an approach may offer improved sensitivity to subtle yet theoretically

and practically significant effects of neurochemical agents or other interventions on learning

behavior. When compared with existing modeling strategies, the hierarchical EWA model was

shown to perform well with respect to model fit and complexity; it provided dramatically im-

proved fit to the data when compared to themodel that assumes all parameter values are shared

across participants and sessions. In addition, inference regarding subgroups is automatically

incorporated within this framework through the regression models and therefore does not re-

quire multiple fittings to different subgroups (Ahn et al., 2017). Fitting the model separately for

different groups and then performing a comparison between the estimated parameters could

be problematic in that it may introduce biases and false positives (Moutoussis, Hopkins, &

Dolan, 2018). Similarly, in our simulation study, fitting the model separately for each indi-

vidual resulted in substantial and systematic bias for parameter estimates across individuals,

confounding the interpretation of these individual differences with respect to biological or

psychological covariates. Our hierarchical Bayesian approach fully addresses this issue and

therefore should be the preferred methodology for future studies.

Our model can be readily applied to a diverse range of research studies focused on un-

covering the relationship between biological variables and behavioral signatures in strategic

learning. For example, this framework is appropriate for characterizing and comparing be-

havioral patterns across different clinical populations—the primary goal of the emerging field

of computational psychiatry (Friston, Stephan, Montague, & Dolan, 2014; Lee, 2013). In par-

ticular, impairments in social functioning have been identified as a key element of a variety

of mental and psychiatric disorders (American Psychiatric Association, 2013), and novel in-

sights into the nature of such impairments have been revealed using computational-modeling

and game-theoretic approaches (Chiu et al., 2008; King-Casas et al., 2008; Yoshida, Seymour,

Friston, & Dolan, 2010), including the EWA model (Crawley et al., 2019; Hunter et al., 2019).

Similarly, the regression framework of our model will benefit studies examining how strategic

learning behavior changes as a function of covariates of biological significance, such as age (in

both developmental, Van den Bos, van Dijk, & Crone, 2012, and aging samples, Zhu, Walsh,

& Hsu, 2012), symptom severity, lesion size, and drug dosage. Furthermore, our model offers

more accurate derivation of individual-level latent variables during learning (Zhu, Mathewson,
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& Hsu, 2012). By better reflecting the underlying neurocomputational processes, improved

model identification may in turn contribute to the evaluation of individual differences in the

neural signatures of strategic learning through neuroimaging techniques (Daw, 2011). Addi-

tionally, the regression framework in Equation 1 can easily be extended to include any measur-

able factors that may explain variability between the parameters. Such factors could include

additional random effects to account for more complex correlation patterns (e.g., time series

correlation due to repeated measures), Bayesian variable selection, and mixture model prior

distributions to induce clustering of selected variables. Specialized knowledge regarding rela-

tionships between parameters can also be incorporated by adjusting Equation 1 accordingly.

However, future work considering these extensions, and others, should consider the compu-

tational complexity of the resulting models.

It is worth pointing out one caveat to the current implementation of the model. The as-

signment of starting values for Vijk(0) and Nij(0) could potentially have a large impact on the

estimation of the unknown parameters, especially in games with smaller numbers of rounds. In

earlier versions of the modeling, we attempted placing prior distributions on these parameters

but encountered computational complexities arising from the introduction of many additional

unknown parameters and relatively weak information in the data with which to estimate them.

As a result, we chose the values using simplifying assumptions according to the relevant litera-

ture. While studies of strategic learning typically employ a relatively large number of rounds to

better identify the temporal dynamics of behavior and therefore alleviate the impact of starting

values, future studies may consider addressing this problem more rigorously.

Extending the proposed modeling framework, the EWA model can also be seen as a spe-

cial case of model-based reinforcement learning (Doll, Bath, Daw, & Frank, 2016; Hampton,

Bossaerts, & O’Doherty, 2008; Lee, Seo, & Jung, 2012), where the belief learning component is

essentially a model about the opponent’s behavior. Therefore, our model could be easily gener-

alized to model-based reinforcement learning in a nonsocial context. More broadly, through a

similar hierarchical Bayesian setting, regression models could be incorporated into parameters

in any computational model of behavior beyond learning. Again, the exact form of the regres-

sion model, the covariates it includes, and the correlational structure between parameters can

be tailored to the specific research question of interest. The use of a multivariate normal dis-

tribution to account for cross correlation between different parameters is also applicable to

non-EWA models that contain multiple unknown parameters. Common covariates in compu-

tational psychiatry studies may include group indicators for experimental manipulations (e.g.,

treatment vs. placebo), for disease status or severity, or for demographic characteristics (e.g.,

gender or age groups), as well as psychopathological or psychiatric measures (e.g., scores from

psychometric scales or questionnaires).

In many settings, the hierarchical Bayesian approach provides improved estimates (i.e.,

reduced mean squared error) of such covariate effects, addressing challenges in accurately

capturing these effects with traditional approaches, as shown by both our article and related re-

cent work of others (e.g., Moutoussis et al., 2018). Meanwhile, accounting for intraparticipant

correlation of model parameters is particularly useful in longitudinal studies or within-subject

designs, which are increasingly common in computational psychiatry studies. Combined with

innovative experimental designs, further applications of such models may be possible, such

as transfer learning within and between tasks (Canini, Shashkov, & Griffiths, 2010). More spe-

cific theories and hypotheses about what is being transferred and what factors might affect such

transfers could facilitate the formulation of more targeted treatment in the model. This would

be a useful and important direction for future extensions. Accounting for correlation between
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different model parameters could also play an important role in gaining quantitative insights

into the complex interactions between different biological and psychological processes under-

lying behavior. Given that the relationship between parameters intrinsic to a behavioral model

and those in the regression model could be complicated, future work is needed to more specif-

ically examine the properties of these extensions and to address any potential computational

challenges.

To summarize, our hierarchical Bayesian EWA model combines state-of-the-art Bayesian

modeling techniques with the well-validated EWA framework for strategic learning. It offers

a number of advantages over individual- and group-level model fitting, two approaches com-

monly used in existing literature. In so doing, it offers a timely method, along with other

newly developed approaches, such as those using the expectation-maximization algorithm

(Huys et al., 2015), for addressing individual differences in behavior and their neurobiologi-

cal substrates, especially as such individual differences are increasingly emphasized in basic,

translational, and clinical neuroscience studies, empowering researchers to detect and dissect

heterogeneity in the dynamics of learning and its biological mechanisms.

DATA AND CODE AVAILABILITY

Simulated datasets and code for fitting the new method are available at https://github.com

/warrenjl/Bayesian_EWA.
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