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ABSTRACT

Anxiety disorders are characterized by a range of aberrations in the processing of and

response to threat, but there is little clarity what core pathogenesis might underlie these

symptoms. Here we propose that a particular set of unrealistically pessimistic assumptions

can distort an agent’s behavior and underlie a host of seemingly disparate anxiety symptoms.

We formalize this hypothesis in a decision-theoretic analysis of maladaptive avoidance and

a reinforcement learning model, which shows how a localized bias in beliefs can formally

explain a range of phenomena related to anxiety. The core observation, implicit in standard

decision-theoretic accounts of sequential evaluation, is that the potential for avoidance

should be protective: If danger can be avoided later, it poses less threat now. We show how

a violation of this assumption—via a pessimistic, false belief that later avoidance will be

unsuccessful—leads to a characteristic, excessive propagation of fear and avoidance to

situations far antecedent of threat. This single deviation can explain a range of features of

anxious behavior, including exaggerated threat appraisals, fear generalization, and persistent

avoidance. Simulations of the model reproduce laboratory demonstrations of abnormal

decision-making in anxiety, including in situations of approach–avoid conflict and planning

to avoid losses. The model also ties together a number of other seemingly disjoint

phenomena in anxious disorders. For instance, learning under the pessimistic bias captures a

hypothesis about the role of anxiety in the later development of depression. The bias itself

offers a new formalization of classic insights from the psychiatric literature about the central

role of maladaptive beliefs about control and self-efficacy in anxiety. This perspective also

extends previous computational accounts of beliefs about control in mood disorders, which

neglected the sequential aspects of choice.

INTRODUCTION

Though anxiety disorders differ in their particular symptomology, and in the content and situa-

tions that elicit symptoms, they all are similarly characterized by aberrations in the processing

of and response to threat (American Psychiatric Association, 2013). In particular, at least three

symptoms manifest across many of the anxiety disorders. First, anxiety is associated with exag-

gerated threat appraisal, or a bias toward evaluating threat as disproportionately greater in like-

lihood and severity than is warranted (Clark & Beck, 2011). Second, anxiety is also associated

with fear generalization, wherein the primary threat becomes associated with increasingly dis-

tal locations, events, and thoughts (Dymond, Dunsmoor, Vervliet, Roche, & Hermans, 2015).
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Finally, anxiety is associated with persistent avoidance behavior, which often occurs well in

advance of the materialization of actual threat (Arnaudova, Kindt, Fanselow, & Beckers, 2017).

(Here we distinguish between avoidance and escape, where the former describes actions taken

to prevent the onset of threats, whereas the latter describes defensive responses to proximal

threat). Excessive avoidance behaviors are an especially harmful aspect of anxiety disorders,

both because they interfere with daily life and because they indirectly maintain anxiety by pre-

venting learning from the nonoccurrence of perceived threats. Though laboratory studies of

decision-making and learning in anxious populations have corroborated these clinical obser-

vations (Aylward et al., 2019; Harlé, Guo, Zhang, Paulus, & Angela, 2017; Norbury, Robbins,

& Seymour, 2018), none offer an explanation as to the root of these symptoms.

These symptoms are particularly puzzling from a decision-theoretic perspective (Huys,

Daw, &Dayan, 2015). Inmany circumstances, distant threat should not impinge upon decision-

making in the present. Indeed, we argue that fear and avoidance of situations far in the future

violate the basic logic of evaluation over sequential trajectories of action. This is because

avoidance is by nature protective: The ability to successfully avoid danger in the future means

an agent need not also do so now. For instance, cars endanger pedestrians but can be reli-

ably avoided by following traffic signals; given that, staying indoors offers little or no addi-

tional protection from accidents. This is an instance of a fundamental property of evaluation

in sequential decision-making: The value of present action turns fundamentally on assump-

tions about subsequent events, which importantly include the agent’s own subsequent choices.

Typically, it is appropriate to assume that an agent will continue to make good (i.e., reward-

maximizing/harm-minimizing) choices down the line, and that good choices at the current

stage should therefore anticipate this.

This line of reasoning hints that a fundamental aberration in anxiety disorders may relate

to this assumption, which otherwise should preclude the spread of threat to antecedent sit-

uations and subsequent excessive avoidance. Indeed, anxiety disorders are associated with

pessimistic beliefs about the future (Clark & Beck, 2011). Clinically and subclinically anx-

ious individuals judge future threat as more likely than do nonanxious individuals (Butler &

Mathews, 1983, 1987; MacLeod & Byrne, 1996). Importantly, the development and mainte-

nance of clinical anxiety is strongly tied to diminished perceived control (Bandura & Adams,

1977; Barlow, 2002; Gallagher, Bentley, & Barlow, 2014) such that anxious individuals are

more likely to endorse the belief that they are unlikely or unable to mitigate future threat. In-

deed, lack of belief in one’s ability to successfully navigate future danger is associated with

anxiety (Davey, Jubb, & Cameron, 1996; Dugas, Freeston, & Ladouceur, 1997), and an in-

creased belief in perceived control over threat is correlated with symptom reduction across

the family of anxiety disorders (Gallagher, Naragon-Gainey, & Brown, 2014).

Here we develop this idea—that symptoms of anxiety may arise frommisbeliefs about fu-

ture avoidance—into a formal model of evaluation under pessimistic assumptions about future

choices. We show that a single, localized deviation from normative evaluation can explain

a surprising range of features of anxious behavior, including exaggerated threat appraisal, fear

generalization, and persistent avoidance. This account also offers a new formalization of clas-

sic insights from the psychiatric literature about the central role of beliefs about control and

self-efficacy in anxiety (Bandura & Adams, 1977; Barlow, 2002). Specifically, we show through

simulation that a model with a misbelief about the reliability of future self-action gives rise to

a number of characteristic symptoms and laboratory results concerning anxiety. Our perspec-

tive also extends previous computational accounts of beliefs about control in mood disorders

(e.g., Huys & Dayan, 2009), which neglected the sequential aspects of choice.
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MODEL DESCRIPTION

We model anxious decision-making in the context of Markov decision processes (MDPs). A

standard normative assumption is that agents attempt to optimize the expected cumulative

discounted reward:

Qπ(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)∑
a′

π(a′ | s′)Qπ(s′, a′) . (1)

For any particular state-action (s, a), this is necessarily defined relative to a policy π(a′ | s′)

specifying the assumed distribution of future choices. (It is also defined relative to a discount

rate γ, controlling the present value of future outcomes). The return can be optimized self-

consistently under the assumption that the agent makes the return-maximizing choice at each

step in the future, leading to the familiar expression for the optimal values,

Q∗(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)max
a′

Q∗(s′, a′) . (2)

The “max” operator in Equation 2 yields a fundamental asymmetry between approach and

avoidance, as illustrated in Figure 1. It formalizes the assumption that the agent makes the

return-maximizing choice at each step. Through this operation, opportunities for reward (which

maximize the argument) propagate recursively to earlier steps, but avoidable dangers do not,

because the return-maximizing action is to avoid. (To the extent obtaining reward or avoid-

ing harm are only imperfectly achievable, this propagation and attenuation at each step are

graded according to success probability, but the basic asymmetry remains). This principle is

highlighted in a toy MDP (Figure 1): a deterministic open gridworld with two terminal states, a

rewarding state and a punishing one (Figure 1A). The optimal state values V∗ = maxa Q∗(s, a)

(Figure 1B) reflect a “mountain” of opportunity propagating recursively from the reward. Con-

versely, because harm is avoidable in this environment, its negative value is contained: All

states (even those adjacent to threat) represent the positive opportunity for reward.

Although the return-maximizing assumption self-consistently defines optimal behavior,

an agent need not be restricted to it (Symmonds, Bossaerts, & Dolan, 2010) and might in prin-

ciple anticipate encountering danger under different (e.g., pathological) assumptions about the

future. For example, an agent may expect to fail to take the correct protective actions in later

states [i.e., to use a suboptimal π(a | s)] or may believe that the world’s future dynamics do not

guarantee reliable avoidance even so [i.e., under stochastic or adversarial transition dynamics

Figure 1. An example open field environment. A) A simple deterministic gridworld with two ter-
minal states: one rewarding (blue) and one aversive (red). B–D) States colored by their value under
different levels of pessimism, with arrows showing an optimal trajectory. In B, for an optimistic
agent (w = 1), all states (other than the harmful state) take on positive value. In C, for a pessimistic
agent (w = 0.5), negative value spreads from the source to antecedent states. In D, with increas-
ing pessimism (w = 0), the extent of the spread grows worse, and the return-optimizing trajectory
becomes more distorted and avoidant. (Parameters: γ = 0.95).
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P(s′ | s, a)]. Consider an agent who has such pessimistic expectations about dangerous events

at future steps. Note that assumptions of this sort, even if incorrect, can serve adaptive pur-

poses. In general, pessimistic assumptions can help to ensure robustness and safety under

uncertain or even adversarial scenarios (Garcia & Fernandez, 2015). Related work in rein-

forcement learning shows how computing returns with pessimistic predictions can help to

quantify variability in outcomes (i.e., to learn different points in the distribution of possible

returns; Bellemare, Dabney, & Munos, 2017), which is one way to explicitly and tunably take

account of risk tolerance. Indeed, it is common in machine learning theory to optimize out-

comes under worst-case assumptions.

Here we propose unrealistically pessimistic assumptions as a root cause of many anx-

ious symptoms. Such pessimism can be encoded either in the policy, π(a | s), or transition

probabilities, p(s′ | s, a). These, respectively, correspond to misbeliefs about one’s own avoid-

ance actions or the environment’s responses to them, a point to which we return in discussion.

Here, for concreteness, we focus on distortions in the policy. In particular, we adopt the

β-pessimistic value function from Gaskett (2003) to define state-action value in expectation

over a mixture of the best and worst action:

Qw(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)

(

w max
a′

Qw(s′, a′) + (1− w)min
a′

Qw(s′, a′)

)

. (3)

The weight parameter w controls the degree of pessimism. An optimistic agent (w = 1) expects

in the future to act fully in accordance with its preferences, whereas a pessimistic agent (w = 0)

expects to act contrary to its preferences. Importantly, this belief is false under the model; that

is, we assume, at each step, that the agent actually chooses by maximizing the values given

by Equation 3. But these values are always computed under the assumption that the agent will

then not maximize at all later steps. (Another way to say this is that we assume choices at each

step are optimal, but only under the assumption that later choices will not be). Figures 1C and

1D illustrate the consequences of different levels of pessimism for valuation in an example

gridworld. The value of threat propagates, with increasing distance across the state space, due

to an increasing expectation that the agent may fail to avoid threat in the future.

This simple simulation reflects a localized violation of the core decision theoretic as-

sumption of future return-optimizing action. Therefore the model’s behavior already echoes

several core symptoms of anxiety disorders. Namely, the pessimistic agents in Figures 1C and

1D exhibit exaggerated threat appraisals (otherwise neutral states unrealistically signal dan-

ger), generalization of fear (threat value spreads across the gridworld), and persistent avoidance

(early on, the agent takes paths that maintain increasing distances from threat). Importantly, as

we elaborate in the following pages, this deviation from the usual assumptions is supported by

prominent clinical theories of anxiety.

SIMULATIONS

In what follows, we demonstrate through simulation how our simple model can account

for anxious behavior in laboratory-based studies of sequential learning and decision-making.

(Because in our model, anxiety arises through biased sequential evaluation, we will not ad-

dress one-step bandit tasks, where others have reported learning deficits associated with anx-

iety, e.g., Aylward et al., 2019; Harlé et al., 2017). We also show that our model is consistent

with clinical theory describing the transition from clinical anxiety to depression. Unless other-

wise noted, state and action values under varying degrees of pessimism were solved for using
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the value iteration dynamic programming method (Sutton & Barto, 2018). All simulations

were implemented in the Python programming language, and the code is publicly available at

https://github.com/ndawlab/seqanx.

Approach–Avoidance Conflict

One behavioral finding characteristic of anxiety disorders is unbalanced processing of approach–

avoidance conflict (Aupperle & Martin, 2010). Anxious individuals are more likely to forgo

potential gains to avoid potential danger. Many of the disruptions anxiety causes to everyday

functioning (e.g., avoiding social obligations for fear of possible social humiliation) can be

understood in these terms. As such, many have sought to probe and measure this behavior

in the laboratory. For instance, in the balloon analog risk task (BART; Lejuez et al., 2002),

participants attempt to earn money by pumping virtual balloons. With each pump, the balloon

inflates and money is earned, but so too increases the chance that the balloon will pop and the

accumulated earnings will be lost. At any point in a trial, a participant may cash out, banking

the money earned and ending the trial. Anxiety is correlated with fewer pumps of the balloon

and earlier cash-outs in the BART (Maner et al., 2007; Ramírez, Ortega, & Del Paso, 2015).

As shown in Figure 2, our model easily accommodates this result. Whereas optimistic

agents pump until the marginal gain of a pump no longer offsets the chance of the balloon

bursting, optimal choice under increasingly pessimistic (i.e., anxious) assumptions cashes out

progressively earlier—similar to empirical findings (Maner et al., 2007; Ramírez et al., 2015).

This is because it anticipates and avoids future errors in choice, which would otherwise result

in the balloon popping. Our model can analogously explain other manifestations of biased

Figure 2. The balloon analog risk task (BART; Lejuez et al., 2002). A) The risk of balloon burst
(point loss) increases with each pump and does so earlier for the high-risk (red) than low-risk (blue)
balloons. (For full rules of the task, see Methods). The optimal policy (number of pumps) under
increasingly pessimistic valuation is presented for B) low-risk and C) high-risk balloons. The opti-
mistic agent (w = 1) prefers a policy reflecting the true environmental risk. The moderate (w = 0.6)
and strongly (w = 0.2) pessimistic agents cash out earlier, as is observed in anxious individuals. D,
E) In the sleeping predator task, the risk of loss is constant, but the cost of loss still increases as
more rewards are gathered. The value of reward pursuit under increasingly pessimistic valuation is
presented for scenarios with D) low risk and E) high risk of predator awakening. The relative value
of approach (vs. avoid) decreases with loss amount and threat level, and more so under pessimistic
assumptions. (Parameters: γ = 1.0).

Computational Psychiatry 5
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approach–avoid conflict in anxiety, such as in the predator avoidance task (Fung, Qi, Hassabis,

Daw, & Mobbs, 2019).

A unique prediction of the model (because we assume optimal choice under the assump-

tion of future suboptimality) is that bias should arise only when beliefs about future avoid-

ance are involved, rather than direct conflict between immediate impulses. Recent data (Fung

et al., 2019) using a predator avoidance task, analogous to the BART, support this view. In this

task, increasing trait anxiety predicted earlier escape (analogous to cash-out in the BART) for

slow predators (for whom future decisions to escape were a relevant consideration) but not for

fast ones (who would attack immediately, mooting consideration of future steps).

Relatedly, the model can also capture findings of increased behavioral inhibition, mea-

sured as prolonged response times, in anxious individuals under threat (Bach, 2015). In the

behavioral inhibition task, participants seek tokens adjacent to a virtual “sleeping predator,”

which are all lost if the predator awakes. Though in this variant, the risk of predation is con-

stant throughout a trial (rather than increasing, as in the BART), the potential loss from capture

still increases with each token collected. Bach found that participants are slower to collect

tokens as this potential loss increases and that this slowing is enhanced by subclinical anxiety.

We can capture this effect in our model by noting that the relative value of approach com-

pared to avoidance is reduced as potential loss and the risk that the predator awakes increase

(Figures 2D and 2E). These effects are amplified under more pessimistic (i.e., in our model,

more anxious) assumptions about future actions. Thus, as before, anxious pessimism in our

model produces greater and earlier choice of avoidance, analogous to earlier cash-out in the

BART. To extend this effect to reaction times, we adopt the further, standard assumption that ac-

tions (here approach) are slower when their relative values compared to alternatives are lower

(Oud et al., 2016). In this case, the model captures behavioral inhibition (slower responses as

threat increases) and its enhancement by anxiety, as measured by Bach (2015). (Note that we

need not assume that the coupling of reaction times to action value spread is due to difficulty

in decision formation per se, which Bach argues against: It may, for instance, reflect Pavlovian

initiation biases; Niv, Daw, Joel, & Dayan, 2007).

Aversive Pruning

Another laboratory phenomenon associated with anxiety is aversive pruning in planning (Huys

et al., 2012; Lally et al., 2017). This refers to the idea that when evaluating future action trajec-

tories in a sequential task like chess, people are resource limited, cannot evaluate all possible

options, and must selectively consider certain paths and neglect others. One proposal for how

people accomplish this is aversive pruning (Huys et al., 2012), wherein choice sequences in-

volving large losses are discarded from further evaluation. An example of aversive pruning

is shown in Figure 3A. Although the optimal choice in the decision tree is to weather an ini-

tial large loss (e.g., −70) to reap the large gain that follows, people tend to disfavor this path,

suggesting they prune it and consequently neglect the later gain. The degree of such pruning

correlates, depending on the study, with subclinical depressive (Huys et al., 2012) or anxiety

(Lally et al., 2017) symptoms.

Our model predicts this result (Figure 3B) as specifically linked to our model of anxious

pessimism, though for a somewhat different reason than in Huys’s original modeling. In our

model, pessimistic (anxious) agents neglect large gains deeper in the tree, not because they

fail to consider them (here we assume full evaluation of the Bellman equation), but because

with increasing anxiety, they increasingly expect the potential of choosing incorrectly after-

ward, thus failing to recoup the loss (and, mathematically, probabilistically pruning the better
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Figure 3. The decision tree environment (Huys et al., 2012; Lally et al., 2017). A) An optimistic
agent (w = 1) prefers the optimal loss-minimizing policy through the initial large loss (left branch).
B) A pessimistic agent (w = 0.5) comes to prefer the branch without the large loss so as to avoid
being unable to recoup the large initial loss. One-step rewards (or costs) are presented in each state;
the net value Q on each path is shown numerically. (Parameters: γ = 1.0).

branches). Future research could use slight variants in the decision trees to tease apart these

different interpretations, for example, by comparing decision trees that differ only in what fol-

lows the large initial loss. Under a model of aversive pruning, such a change should not impact

the proportion of agents selecting the left branch; in contrast, our model predicts that choice

should parametrically increase with the extent of the amelioration.

The Anxiety–Depression Transition

So far, we have considered only the asymptotic preferences implied by our pessimistic value

function, which we computed directly through value iteration. But we can also consider the

process of learning under this value function (e.g., by variants of Q-learning, Sutton & Barto,

2018, or DYNA, Russek, Momennejad, Botvinick, Gershman, & Daw, 2017; Sutton, 1991,

using the β-pessimistic return). The dynamics of such learning may speak to the progression

of symptoms.

Of note in this respect, anxiety and depression are highly comorbid, with almost half

of individuals with a lifetime depression diagnosis also diagnosed with an anxiety disorder

(Kessler et al., 2015). One notable proposal is that this association often (though by no means

exclusively) arises longitudinally, in particular, that clinical anxiety precedes certain types of

depression (Alloy, Kelly, Mineka, & Clements, 1990; Jacobson & Newman, 2014). The idea,

in brief, is that uncertainty in one’s ability in the face of future threat results in anxiety and

avoidance behaviors. Persistent avoidance, in turn, begets forgone reward, leading ultimately

to a belief that reward is unobtainable and subsequently to depression. This informal story

can be captured by simulations of learning in our model (Figure 4) in environments like that

of Figure 1. Over the course of learning, the penumbra of negative value under pessimistic

assumptions spreads gradually throughout the environment. This can in turn lead the agent

to expect no reward and, also echoing the anergic symptoms of depression, forgo action al-

together. This last point in particular dovetails nicely with theoretical accounts of the anergic

aspects of depression (Huys et al., 2015), which point out that low experienced reward rates

should in decision-theoretic accounts lead to reduced response vigor (Niv et al., 2007), leading

to a potentially self-reinforcing downward spiral.

In addition to suggesting one explanation for the comorbidity of anxiety and depression, our

model hints at a reason for the longevity and recurrence of anxiety disorders even with treatment.

Computational Psychiatry 7
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Figure 4. An example of the anxiety–depression transition. A) A simple deterministic gridworld
with two terminal states: one rewarding (blue) and one aversive (red). B, C) The development of
value expectancies over three steps of learning, for two levels of pessimism. States are colored
by their values under different levels of pessimism, with arrows showing an optimal trajectory. In
B, for an optimistic agent (w = 1), all states (other than the harmful state) take on positive value
with learning. In C, for a pessimistic agent (w = 0.6), negative value spreads from the source to
antecedent states. As a result of avoidance, the agent learns reward is unobtainable and develops
anergic symptoms (i.e., forgoes action). (Parameters: γ = 0.95).

Because pessimistic expectations allow for threat value to spread to states and actions far

antecedent of the primary danger (e.g., Figure 1D), it would accordingly also take a great many

steps of iterative learning to correct all these exaggerated appraisals of threat. Frustratingly,

these biased estimates of value may still remain even after a misbelief in the efficacy of future

action is corrected for in a course of therapy. This phenomenon (similar to failures ofmodel-free

reinforcement learning algorithms to adjust to reward revaluation without extensive relearning;

Daw, Niv, & Dayan, 2005) may offer at least a partial answer to a classic puzzle in pathological

avoidance, that is, why it is so resistant to extinction (Moutoussis, Shahar, Hauser, & Dolan,

2018), and to the unfortunately high rates of anxiety recurrence following treatment (Pittig,

Treanor, LeBeau, & Craske, 2018).

Free Choice Premium

Finally, the model also offers a novel prediction tying anxious beliefs to a classic, but hitherto

separate, phenomenon known as the free choice premium. This refers to the finding that, all

else being equal, people tend to treat choice as itself valuable, that is, choices that lead to

more choice opportunities in the future are preferred to those that lead to fewer future choice

opportunities. A free choice premium has been observed in multiple behavioral experiments

(Leotti, Iyengar, & Ochsner, 2010; Ly, Wang, Bhanji, & Delgado, 2019). A variant of a free

choice premium paradigm from two previous studies (Leotti & Delgado, 2011, 2014) is pre-

sented in Figure 5A. In the task, participants repeatedly choose between a free choice option,

allowing for an additional future choice, and a fixed choice option. Importantly, both choices

lead to identical, stochastic outcomes (e.g., 50–50 chance of [1,−1]). Empirical studies have

found that human subjects (from a general, healthy population) prefer the free choice option

despite it conferring no additional benefits relative to the fixed choice option.

Computational Psychiatry 8
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Figure 5. The free choice premium task (Leotti & Delgado, 2011, 2014) with equal chance
of outcome R ∈ [1,− 1]. A) Nonanxious participants exhibit a preference for the free choice option
(blue) despite it conferring no benefit over the fixed choice option (gray). B) Pessimistic agents
show an attenuated free choice bias. The fractional preference for the free choice option over
the simulated experiment is shown for three populations of subjects with levels of pessimism
w (y-axis; each dot represents an individual simulated agent, and the smoothed density of free
choice bias for each pessimism level is also shown). (Parameters: Q-learning with γ = 1.0, and
inverse temperature, β, increased from 1 to 15 over 100 episodes).

On one account (Ly et al., 2019), this free choice preference directly and specifically

reflects the assumption about sequential choice whose violation we argue is core to anxiety,

that is, that the agent will make reward-maximizing choices in the future. Under such an

optimistic assumption (and given noisy and imperfect knowledge about the value of each

option, due to learning), additional options are valuable in the sense that free choice can be

expected to exploit the best among them. Namely, the maximum over several noisy values

is, in general, larger than a single option from the same distribution. Our proposal makes

the novel prediction that if, as we hypothesize, anxiety reflects a violation of this optimistic

assumption, then anxious individuals will exhibit a diminished or reversed free choice bias,

as shown in simulation in Figure 5B. Future empirical research will be required to test this

prediction.

DISCUSSION

Central to anxiety disorders are symptoms including exaggerated threat appraisal, threat gen-

eralization, and excessive avoidance (Arnaudova et al., 2017; Clark & Beck, 2011; Dymond

et al., 2015). We have presented a simple computational account suggesting how a single

underlying pessimistic misbelief can give rise to these aberrations in learning and choice. We

use a reinforcement learning approach in which undue pessimism results in maladaptive pol-

icy. Specifically, we show how a failure to believe in the reliability of one’s future actions can

effectively backpropagate negative value across states of the environment. This process results

in a range of inferences and behaviors resembling those observed in clinical anxiety. Though

it is by no means a complete account of anxiety, our account ties together a surprisingly wide

range of symptoms of anxiety disorders.

We are not the first to propose a formal theory of control in psychiatry using MDPs. Huys

and Dayan (2009) also provided a computational account of learned helplessness through sim-

ple models of one-step action–outcome contingencies. Our accounts differ particularly in our

exclusive focus on control in the sequential setting, which Huys and Dayan did not address. In-

deed, we propose that ultimately the key to anxiety is precisely the way in which evaluation in

sequential tasks is necessarily reliant on expectations about future choice and events. Similarly,
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research and modeling by Bishop and colleagues (Browning, Behrens, Jocham, O’Reilly, &

Bishop, 2015; Gagne, Dayan, & Bishop, 2018) also taking a decision-theoretic approach has

stressed the importance of uncertainty as a core feature of anxiety. Specifically, they have

described uncertainty as inherently aversive in anxiety and have presented models of how

uncertainty may be increased in anxiety (e.g., aberrant processing of environmental volatil-

ity). The present work is compatible with deficits in processing uncertainty and might instead

be viewed as an attempt to unpack why uncertainty is aversive—because, in our view, it is

resolved (i.e., marginalized) under pessimistic distributional assumptions. As for control, we

extend this view to focus on how uncertainty is resolved in the sequential setting and also

to zero in on particular instances of uncertainty (about future actions and some other options

discussed next) and misbeliefs about them that, we argue, are particularly consequential.

For concreteness, we formalized pessimistic assumptions in terms of only one of several

variants of a more general family of models, but we do not mean this restriction as a substantive

claim. In particular, we focused on the agent’s beliefs about its own future actions: expecting

failure in handling or avoiding future threat. However, this is just one of several different pes-

simistic misbeliefs that could satisfy the basic logic of our model and produce similar symp-

toms. These other beliefs need not be mutually exclusive, though they might reflect different

cognitive routes to symptoms that would, in turn, imply different psychotherapeutic strategies.

For instance, one variant of the model is suggested by the observation that Equation 1 is

also computed in expectation over the anticipated future environmental dynamics p(s′ | s, a).

Thus pessimism can alternatively be encoded in this distribution; for example, a false belief

that the world’s response to one’s choices is unpredictable or adversarial. Because the Bellman

equation for the return averages over this distribution in addition to the choice policy at each

step, and because an unpredictable environment also reduces the efficacy of avoidance, either

formulation can produce ultimately similar results in our simulations here. A third variant of

our model arises from uncertainty about the current state s of the environment. Although we

have taken it as fully observed, if the world state is only partly known, then this distribution

too must be averaged out in evaluating each action (Kaelbling, Littman, & Cassandra, 1998),

and here also a pessimistic skew will propagate the expectation of danger and result in exag-

gerated avoidance (Paulus & Yu, 2012). In summary, pessimistic resolution of several different

varieties of uncertainty (e.g., about future action, environmental dynamics, or environmental

state) could each produce similar symptoms for analogous reasons. However, from the per-

spective of cognitive theories of anxiety, these represent quite different maladaptive beliefs:

a key difference that may be relevant in guiding treatment (especially cognitive psychothera-

pies aimed at ameliorating the false beliefs) of a host of anxiety disorders.

Particularly due to the way it encompasses several such variants, our account formalizes

a long-standing range of theory on the role of control in anxiety. Central to many prominent

cognitive theories of anxiety in the psychiatric literature is a perceived lack of control. For

example, self-efficacy theory (Bandura & Adams, 1977) and the triple vulnerabilities model

(Barlow, 2002) both posit that a reduced belief in the ability to effectively respond to future

threat is involved in the genesis and maintenance of clinical anxiety. In contrast, and focused

less on the self, the learned helplessness theories of anxiety (Alloy et al., 1990) claim that

clinical anxiety results from an uncertain belief in the controllability of the environment, such

that future threat cannot be effectively mitigated or avoided. As we note earlier, the present

model and analysis (though simulated here in terms of self-efficacy) can accommodate either

variant and show how they relate to one another as members of a more general family of

accounts.
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The possibility of multiple anxious phenotypes, each characterized by unique but not

mutually exclusive beliefs, suggests the need for behavioral assays designed to isolate and in-

terrogate such biases. One such task is the free choice premium paradigm described earlier,

which captures pessimism (or optimism) about one’s own choices. An analogous task might

measure pessimistic expectations about environmental state transition probabilities. For in-

stance, this could be accomplished with a variant of a sequential decision-making task that

requires subjects to learn the transition structure of a multistep decision tree (Gläscher, Daw,

Dayan, & O’Doherty, 2010; Lee, Shimojo, & ODoherty, 2014) and make choices to gather re-

wards in it. Pessimistic expectations about environmental state transitions would bias choices

in this type of task. Individually, these tasks could test our hypothesis that either sort of misbe-

lief is associated with symptoms of anxiety; they could also be compared to one another (and

to more detailed self-report assessments of beliefs about control or self-efficacy) to investigate

potential heterogeneity across patients in the antecedent of anxiety.

Importantly, although we have considered the most pathological cases of pessimism,

these may reflect the exaggerative extremes of an otherwise adaptive evaluation strategy. Tra-

ditionally, the goal of reinforcement learning algorithms is to find a reward-maximizing policy

with respect to the expectation (average) of returns. However, depending on one’s risk attitude

and uncertainty about the environment (e.g., if there is potential for catastrophic loss), it may

instead be preferable to learn a policy with respect to an alternative and more pessimistic ob-

jective function, similar to the one considered here. Accordingly, returns and agent behaviors

similar to ours arise in previous research on learning risk-sensitive and robust policies (Bellmare

et al., 2017; Chow, Tamar, Mannor, & Pavone, 2015; Morimura, Sugiyama, Kashima, Hachiya,

& Tanaka, 2012).

We have centered our discussion at Marr’s (1982) computational level: on beliefs and

their consequences in terms of action values. We have so far remained agnostic as to how, algo-

rithmically or mechanistically, these misbeliefs are implemented in the brain (Friston, Stephan,

Montague, & Dolan, 2014). Importantly, the brain is believed to contain multiple distinct

mechanisms for evaluating actions (e.g., model-based and model-free learning; Daw et al.,

2005; Huys et al., 2015), and pessimistic beliefs might play out either differentially or similarly

through each of these mechanisms. One promising possibility is that these symptoms mainly

reflect aberrations in model-based planning (Huys et al., 2015), that is, explicitly evaluating

actions by mentally simulating possible trajectories. Recent work has suggested that this pro-

cess may be accomplished by mentally “replaying” individual potential trajectories (Mattar &

Daw, 2018; Momennejad, Otto, Daw, & Norman, 2018). In this setting, the biases we sug-

gest would amount to overcontemplating, or overweighting, certain pessimistic trajectories

(Hunter, Meer, Gillan, Hsu, & Daw, 2019). Such a bias might be detectable using neuroimag-

ing, as a change in which types of events that tend to be replayed (Ambrose, Pfeiffer, & Foster,

2016; Momennejad et al., 2018). Such a biased replay process, in turn, may also correspond

to worry and rumination. Indeed, in line with the present results, chronic worry is associated

with reduced perceived control, diminished belief in self-efficacy in response to threat, and

exaggerated threat appraisal (Berenbaum, 2010). This suggests that clinical anxiety may in part

result from planning processes gone awry.

It is important to note that the present model may not describe all anxiety disorders

with equal accuracy. Indeed, our analysis of pessimistic sequential evaluation is, by defini-

tion, a model of prospective cognition. Thus the present results are more likely to accurately

describe the anxiety disorders that primarily involve aberrations in future-oriented cognitive

processes, such as generalized and social anxiety disorders. Naturally, the present model can
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account neither for the compulsive behaviors of obsessive-compulsive disorder (OCD) nor the

memory disturbances of posttraumatic stress disorder (PTSD). That said, recent clinical studies

have suggested that diminished perceived control is a vulnerability factor common to all anx-

iety disorders, including OCD and PTSD (Gallagher, Bentley, & Barlow, 2014; Gallagher,

Naragon-Gainey, & Brown, 2014). Importantly, aspects of other psychiatric disorders that

involve future-oriented misbeliefs, worry, and avoidance behaviors (e.g., eating disorders;

Konstantellou, Campbell, Eisler, Simic, & Treasure, 2011) may similarly be well described

by the current account. Indeed, and much more speculatively, the model may also have impli-

cations for bipolar disorders. The onset of manic symptoms is associated with overoptimistic

perceived control (Alloy, Abramson,Walshaw, &Neeren, 2006), and our samemodel and basic

reasoning (though now envisioning excessively optimistic rather than excessively pessimistic

beliefs) may help to explain how this bias may translate into risk-seeking behavior and dys-

reguated goal pursuit. As such, the present results are transdiagnostic and not limited to one

particular diagnosis.

Finally, the relationship between evaluation, planning, and neural replay discussed herein

suggests potential future work that might help to bring this model into contact with the more

memory-related aspects of PTSD. For instance, the same replay processes that can be used

to evaluate actions can also, in theory, update predictive representations, cognitive maps, or

models of the environment (Russek et al., 2017), such as the successor representation (Dayan,

1993; Momennejad et al., 2017). If so, similar biases in replay could result in not only aberrant

avoidance behavior but also progressive, aberrant remodeling of world models or cognitive

maps, an observation that may connect to the rich and complex set of issues on memory in-

volvement in PTSD.

METHODS

We model anxious decision-making in the context of MDPs. Tasks were modeled as deter-

ministic, infinite-horizon, discrete-time environments. Some (detailed later) were modeled

with discounted returns γ < 1. All simulations were implemented in the Python programming

language, and the code is publicly available at https://github.com/ndawlab/seqanx.

For all but the free choice premium task, we defined state-action values, Q(s, a), in

accordance with our modified, pessimistic Bellman Equation 3, reproduced for convenience:

Qw(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)

(

w max
a′

Qw(s′, a′) + (1− w)min
a′

Qw(s′, a′)

)

.

Here Q-values were solved for directly through value iteration (Sutton & Barto, 2018). By con-

trast, Q-values in the free choice taskwere computed using the β-pessimism temporal-difference

learning algorithm (Gaskett, 2003), where the reward prediction error is defined as

δw = r(s, a) + γ

(

w max
a′

Qw(s′, a′) + (1− w)min
a′

Qw(s′, a′)

)

−Qw(s, a)

and the update rule is defined as:

Qw(s, a)← Qw(s, a) + η · δw,
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where η is a learning rate. The parameterizations of the MDP environments and learning

algorithms are next specified in turn.

Toy MDP/Anxiety-to-Depression Transition

Both the Toy MDP and anxiety–depression transition simulations were performed using simple

gridworlds. Both environments involved only two nonzero states, one rewarding (r = 10) and

one aversive (r = −10). In both environments, we solved for the discounted, asymptomatic

Q-values using value iteration with γ = 0.95. In the toy gridworld, we performed simulations

under pessimistic assumptions, w ∈ [1.0, 0.5, 0.0]. In the transition gridworld, we performed

simulations under pessimistic assumptions, w ∈ [1.0, 0.6]. To highlight the effects of learning,

we took “snapshots” of Q-values prior to asymptote, three and five steps into value iteration.

Balloon Analog Risk Task/Predator Avoidance Task

The balloon analog risk task (Lejuez et al., 2002) has participants inflate a virtual balloon

for points. Earnings rise with each pump, but so too does the risk of the balloon popping and

subsequent point loss. Unbeknownst to participants, the number of pumps before balloon pop

is predefined and drawn randomly from some distribution (e.g., uniform, normal, exponential),

where the mean controls the risk (i.e., average number of pumps before point loss).

Here we modeled the BART as an undiscounted MDP with 20 states, where transitioning

to each successive state yielded r = 1. The only available actions were to transition to the next

state (e.g., S1 → S2, S2 → S3) or end the episode (i.e., cash out). With each act to move to the

next state, there was some probability of transitioning to a bad terminal state (i.e., balloon pop)

with reward equal to the negative equivalent of accumulated gain thus far. The probability of

this bad transition was modeled using normal density function, with parameters N (16, 0.5)

for low risk and N (8, 0.5) for high risk. The asymptomatic Q-values were solved for using

value iteration for both the low-risk and high-risk conditions under pessimistic assumptions,

w ∈ [1.0, 0.6, 0.2].

The predator avoidance task (Fung et al., 2019) can be analogously modeled. There a vir-

tual predator approaches participants over discrete time steps while participants “forage.” For

every time step the participant remains (i.e., does not flee), points are accumulated. However,

if the participant is caught, all earnings are lost, and an additional penalty is received. Thus

the predator avoidance task bears a striking resemblance to the BART; foraging is equivalent

to virtual pumps, and fleeing is equivalent to cashing out.

Behavioral Inhibition Task

In the behavioral inhibition task (or sleeping predator task; Bach, 2015), participants collect

virtual tokens while evading capture from a virtual predator. Unlike the BART, the risk in the

behavioral inhibition task (i.e., the predator “waking up”) is constant. However, the cost of

capture increases as sequential tokens are collected.

True to the original, we model the task as an undiscounted MDP with six states, where

transitioning to each successive state yielded r = 1. Identical to the BART, the only available

actions were to transition to the next state or to end the episode (i.e., avoid the predator).

With each act to move to the next state, there was a constant probability of transitioning to a

bad terminal state (i.e., capture by the predator), with reward equal to the negative equivalent

of accumulated gain thus far. The probability of bad transition was defined as p = 0.10 for

low risk and p = 0.15 for high risk, based on the objective risk probabilities in the empirical
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experiment (Bach, 2015). The asymptomatic Q-values were solved for using value iteration for

both the low-risk and high-risk conditions under pessimistic assumptions, w ∈ [1.0, 0.6, 0.2].

Aversive Pruning

In the aversive pruning task (Huys et al., 2012; Lally et al., 2017), participants learn to navigate

a six-state graphworld, where each state is directly connected to only two other states. Each

state is associated with some reward (cost), and participants must plan trajectories through the

state-space so as to maximize reward (minimize cost).

We model the task as an undiscounted MDP where the original 6-node network has

been “unravelled” into a 15-state decision tree. This is equivalent to having the participant

start in one state and plan to make three actions. The rewards associated with transitioning to

each state were taken directly from Huys et al., 2012, and Lally et al., 2017. The asymptomatic

Q-values were solved for using value iteration for both the low-risk and high-risk conditions

under pessimistic assumptions, w ∈ [1.0, 0.5].

Free Choice Task

In the free choice task (Leotti & Delgado, 2011), participants complete a series of two-stage

trials. In the first stage, they select between a free choice option, allowing them to make an

additional choice in the second stage, and a fixed choice, permitting no choice in the second

stage. In the second stage, participants select between one of two bandits (free choice) or are

randomly assigned a bandit (fixed choice). Importantly, all bandits pay out under an identical

reward distribution.

We model the task as an undiscounted MDP with a six-state decision tree structure. In

the free choice branch, agents are able to select between two terminal bandits; in the fixed

choice branch, agents can choose only one terminal bandit. All bandits pay out identically,

in this case, randomly in the set, r ∈ [−1, 1]. Learned Q-values were computed using a pes-

simistic temporal difference learning algorithm, with learning rate η = 0.4. Each simulated

agent learned the values of each action over 100 trials, with an increasing, logarithmically

spaced inverse temperature in the range of β ∈ [0, 15]. (Inverse temperature was gradually in-

creased over learning to facilitate exploration of choice options). The resulting fraction of free

choices made over the last 50 trials was stored for 1,000 simulated agents, run separately for

pessimistic assumption, w ∈ [1.0, 0.5, 0.0].
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