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ABSTRACT

The ultra-high risk (UHR) state was originally conceived to identify individuals at imminent
risk of developing psychosis. Although recent studies have suggested that most individuals
designated UHR do not, they constitute a distinctive group, exhibiting cognitive and
functional impairments alongside multiple psychiatric morbidities. UHR characterization
using molecular markers may improve understanding, provide novel insight into
pathophysiology, and perhaps improve psychosis prediction reliability. Whole-blood gene
expressions from 56 UHR subjects and 28 healthy controls are checked for existence
of a consistent gene expression profile (signature) underlying UHR, across a variety of
normalization and heterogeneity-removal techniques, including simple log-conversion,
quantile normalization, gene fuzzy scoring (GFS), and surrogate variable analysis. During
functional analysis, consistent and reproducible identification of important genes depends
largely on how data are normalized. Normalization techniques that address sample
heterogeneity are superior. The best performer, the unsupervised GFS, produced a strong and
concise 12-gene signature, enriched for psychosis-associated genes. Importantly, when
applied on random subsets of data, classifiers built with GFS are “meaningful” in the sense
that the classifier models built using genes selected after other forms of normalization do not
outperform random ones, but GFS-derived classifiers do. Data normalization can present
highly disparate interpretations on biological data. Comparative analysis has shown that
GFS is efficient at preserving signals while eliminating noise. Using this, we demonstrate
confidently that the UHR designation is well correlated with a distinct blood-based gene
signature.

a n o p e n a c c e s s j o u r n a l

Citation: Goh, W. W. B., Sng, J. C.-G.,
Yee, J. Y., See, Y. M., Lee, T.-S., Wong,
L., & Lee, J. (2017). Can peripheral
blood-derived gene expressions
characterize individuals at ultra-high
risk for psychosis? Computational
Psychiatry, 1, 168–183. https://doi.
org/10.1162/cpsy_a_00007

DOI:
https://doi.org/10.1162/cpsy_a_00007

Supporting Information:
https://doi.org/10.1162/cpsy_a_00007

Received: 20 March 2017
Accepted: 7 June 2017

Competing Interests: The authors
declare no conflicts of interests.

Corresponding Author:
Wilson Wen Bin Goh
wilsongoh@ntu.edu.sg

Copyright: © 2017
Massachusetts Institute of Technology
Published under a Creative Commons
Attribution 4.0 International
(CC BY 4.0) license

The MIT Press

http://crossmark.crossref.org/dialog/?doi=10.1162/cpsy_a_00007&domain=pdf&date_stamp=2017-12-20
https://dx.doi.org/10.1162/cpsy_a_00007
https://dx.doi.org/10.1162/cpsy_a_00007
mailto:wilsongoh@ntu.edu.sg


Characterizing Ultra-high Risk Psychosis With Blood-Derived Gene Expression Goh et al.

INTRODUCTION

Prodromal (early) intervention has reportedly beneficial effects in attenuating, delaying, and
even preventing psychosis onset (McGlashan et al., 2003; McGorry et al., 2002; Morrison et al.,
2004). Thus high-risk individuals yet to develop full-blown psychosis must be identified. With-
out genetic evidence, positive identification of ultra-high-risk (UHR) individuals is achieved
via interview-based tests: the Comprehensive Assessment of at Risk Mental State (CAARMS;
Yung et al., 2002) and the Structured Interview of Prodromal Syndrome (McGlashan, Miller,
& Woods, 2001). Both assess risk via a panel of scored clinical traits, including the intensity,
frequency, and duration of psychosis symptoms and risk factors (e.g., family history).

UHR designation is useful: Approximately 10%–50% of positively identified individuals
convert to psychosis within a year (Haroun, Dunn, Haroun, & Cadenhead, 2006; Lencz, Smith,
Auther, Correll, & Cornblatt, 2003; Mason et al., 2004; Yung et al., 2006). But these phenotype-
based tests are subjective, and notably, UHR designation has low precision: 50%–90% of
UHRs do not convert within a year. Thus prodromal detection requires improvement, and we
must leverage objective data to reveal pathophysiology and perform risk assessment.

We look to high-throughput gene measurements (genomics) as objective data. Earlier
studies reported identifiable gene expressional differences between psychotic and healthy indi-
viduals in both blood and brain tissues (Bowden et al., 2006; Maycox et al., 2009; Vawter et al.,
2004). But while we may observe statistically significant expressional differences, whether
these signatures have diagnostic value is subjective. Furthermore, statistical feature selection
is complex, and different normalization approaches, statistical thresholds, and multiple-test
corrections can produce highly varied outcomes (Goh & Wong, 2016a). Suppose hundreds
of genes are potential candidates: Naive reliance on and ranking of significance based on
p values (Wang, Sue, & Goh, 2016) do not account for autocorrelations among genes (non-
independence), sampling bias and phenotypic relevance. Moreover, hypothesis-based statis-
tical testing is commonly misinterpreted: When the null hypothesis is rejected in favor of the
alternative because of insufficient evidence, it does not make the alternative statement (there
is a difference) automatically true (Venet, Dumont, & Detours, 2011). Where many variables
are correlated (but phenotypically irrelevant), any random selection of genes can have equal if
not better predictive power. This implies, across different studies, that identified signatures will
vary. Indeed, attempts toward biomarker development for UHR differentiation (Lee et al., 2012;
Takahashi et al., 2010) have been met with skepticism, as noticeably, signatures identified in
one study are irreproducible in another (Bray, 2008; Iwamoto & Kato, 2006). Nonetheless, we
assert that careful experimental design and fair-handed analysis can yield reproducible and
useful functional insights (Wang, Sue, & Goh, 2016).

Brain tissue is ideal for inferring prodromal psychosis, but obviously, invasive surgical
procedures are not feasible for routine diagnosis. Easily extracted surrogate tissues pos-
ing minimal risks to subjects are preferable but discernably less reliable. Blood is a conve-
nient surrogate, but more importantly, blood has been reported to be viable for providing a
“neurological footprint” (Cai et al., 2010). Some studies have supported strong blood–brain
gene correlations at the gene level (e.g., Sullivan, Fan, & Perou, 2006), while others have pre-
sented a less certain view: Blood–brain gene correlations are not conserved at the gene level
but rather at the modular (subnetworks and pathways) level (e.g., Hess et al., 2016). Indeed,
differential genes observed in blood are influenced by input from many other tissues. Given
careful subject selection, background elimination, and reproducibility checks, it is possible to
obtain a signal consistent with changes in the brain’s pathophysiological status (Jasinska et al.,
2009).
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Using blood-based genotyping, our first aim is to determine whether a consistent gene
expression signal differentiating UHR and non-UHR groups exists. The second aim, a prelude
to reproducible statistical feature selection, is to evaluate the impact of various normalization
techniques. Third, we evaluate the reproducibility and relevance of gene signatures.

METHODS AND MATERIALS

Study Design

Participants are drawn from the Longitudinal Youth-at-Risk Study (LYRIKS), a prospective ob-
servational study on youths susceptible to psychosis (Lee et al., 2013). LYRIKS participants
are drawn from mental health care and community-based services and from various educa-
tional institutions in Singapore. Eligibility requirements mandate a narrow age range (14–29
years), no existing antipsychotic treatment, no other psychotic disorder or neurological disease,
and no illicit substance use history. UHR status is ascertained using CAARMS, and positive
identification is made if subjects exhibit attenuated psychotic symptoms (APS), brief limited
intermittent psychotic symptoms (BLIPS), or general vulnerability (Yung et al., 2002). Healthy
controls in this study are participants who did not fulfill UHR criteria and had no psychiatric
disorders when evaluated on the Structured Clinical Interview for DSM–IV Axis I Disorders
(First, Spitzer, Gibbon, & Williams, 1996). Details on LYRIKS’s study methodology are obtain-
able from prior publications (Lee et al., 2013; Mitter, Nah, Bong, Lee, & Chong, 2014). The
dataset comprises 55 UHR subjects and 28 healthy controls (Table 1). Gender and ethnic ratios
are balanced between subjects (UHRs) and healthy controls (non-UHRs) to minimize factor
proportion-imbalance disparities (Patil, Bachant-Winner, Haibe-Kains, & Leek, 2015).

Gene Expression Measurement

Peripheral blood is drawn immediately following assessment into a Tempus Blood RNA tube
(Applied Biosystems, Foster City, CA) and is stored at −80◦C until RNA extraction. Total blood
RNA is extracted using a Tempus Spin RNA isolation kit (Applied Biosystems) and amplified
using an Illumina TotalPrep RNA amplification kit (Ambion, Austin, TX). mRNA expression
profiles are assessed on Illumina HumanHT-12 v4 Expression BeadChip arrays. Experimental
quality controls are performed prior to RNA amplification and before RNA hybridization to en-
sure that RNA concentrations are ≥100 ng/ml, A260/A280 ≥2.0, and clearly defined ribosomal
peaks were seen on agarose gel. All procedures adhered to design protocols as per manufac-
turer recommendations. The readings of the beads in the array are analyzed by Illumina iScan
following hybridization.

Table 1. Study design and factor description of study sample

Status N Subgroups Mean age (years) Gender, N (%) Ethnicity, N (%)

UHR subjects 56 APS: 43 (76.8%) 22.1 Male: 21 (75.0%) Chinese: 21 (75.0%)

BLIPS: 3 (5.4%) Female: 7 (25.0%) Malay: 7 (25.0%)

Vulnerable: 15 (26.8%)

Healthy controls 28 None 22.5 Male: 21 (75.0%) Chinese: 21 (75.0%)

Female: 7 (25.0%) Malay: 7 (25.0%)
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Microarray Quality Control

Probe intensities on the Illumina Microarray BeadChips are summarized using GenomeStudio
(Illumina, San Diego, CA). To ensure read quality, sample-based and probe-based quality con-
trol (QC) is performed. In sample QC, samples with signal-to-noise ratio below 10 or samples
with intensity of negative control probes higher than control probes are considered unreliable
and discarded. In probe QC, probes with detection p values below 0.05 or below background
are considered undetectable and discarded. A total of 84 subjects (56 UHRs + 28 non-UHRs)
across 18,029 gene probes meets QC standards.

Normalization Methods

Following background subtraction, probe-to-gene name mapping, and following median cen-
tering of expression, four normalization approaches are applied on the quantified data: Log-
conversion (None), quantile normalization (Quantile), gene fuzzy scoring (GFS; Belorkar &
Wong, 2016), and surrogate variable analysis (SVA; Leek & Storey, 2007).

Strictly speaking, None is not true normalization; we use this primarily as a negative
control and to facilitate parametric statistics. We use the natural log, such that for each ob-
served measurement x, the transformed value is loge x, where e = 2.718. None reduces the
effect of high orders of magnitude (because e ∼ 3, the data range is reduced by three orders)
and improves the distribution symmetry. However, None is usually insufficient to render sam-
ples cross comparable and is usually accompanied by a second data transformation, typically
z scaling, linear interpolation, or quantile normalization.

Quantile is a gold-standard data transformation procedure and reportedly performs well
in stabilizing variance in Illumina BeadChip HT-12 (Schmid et al., 2010). Although we could
include linear interpolation and z scaling, these are already known to be inferior to Quantile
anyway and detract from more interesting new methods that explicitly deal with heterogeneity.
GFS is an unsupervised signal-boosting transformation (Belorkar & Wong, 2016; Wang et al.,
2016). In GFS, the log-transformed expression matrix is transformed by weighting individual
genes per sample based on expression ranks. GFS uses two thresholds, θ1 and θ2. Features with
ranks above θ1 are assigned a weight of 1, features with ranks between θ1 and θ2 are assigned
an interpolated weight between 1 and 0, and features with ranks below θ2 are weighted as
0. Let r(gi,pj) be the rank of a biological feature gi in patient pj and q(pj,θ) be the rank cor-
responding to the upper θth level of feature ranks in pj. The GFS score s(gi,pj) assigned to
feature gi for patient pj is determined by the function

s(gi, pj) =

⎧⎪⎪⎨
⎪⎪⎩

1
r(gi ,pj)−q(pj,θ2)

q(pj,θ1)−q(pj,θ2)

0

if q(pj, θ1) < r(gi, pj),
if q(pj, θ2) > r(gi, pj) ≥ q(pj, θ2),
otherwise.

As arbitrarily defined thresholds, θ1 and θ2 can take on different values, for example, the
default settings in GFS set θ1 to 5% and θ2 to 15%. However, in their evaluations, Belorkar
and Wong (2016) stated that varying θ1 between 5% and 10% and θ2 between 15% and
20% produces similar results. Comparing GFS against standard normalization techniques—
for example, mean-scaling, z, and quantile normalization—GFS consistently gives better class
discrimination, is robust against batch effects, provides improved power even when sampling
at small sample sizes, and facilitates reproducible selection of biologically relevant features.

SVA is applied on the log-transformed expression matrix. In contrast to GFS, SVA is a
supervised method—that is, it requires specification of class labels, UHR subject and UHR
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control, a priori, meaning that the algorithm is aware of class information—and is therefore
autobiased toward class effects (Leek & Storey, 2007). It assumes that consistent sources of
variation nonassociated with the class factor are likely associated with some unknown hetero-
geneity factor. Having identified the part of the data not associated with class variation, it then
estimates heterogeneity factors via singular value decomposition. These irrelevant variations
(expressed as surrogate variables) are then removed via regression. The beauty of SVA is that
we may isolate UHR-specific signals against a backdrop of various confounding factors that
we cannot possibly control for, especially genetic factors. Although it is extremely powerful,
SVA can be complex to use (Jaffe et al., 2015).

Principal Component Analysis (PCA)

PCA is a linear summarization technique that collapses high-dimensional data (e.g., thou-
sands of genes) into a lower number of orthogonal dimensions, or principal components (PCs;
Giuliani, 2017). We use PCA to observe whether individual samples group by class consis-
tently, without feature selection and regardless of normalization method.

We also use the PCA-generated loading matrix to determine the association of individual
PCs against each factor (class, gender, and ethnicity). Assuming that a factor may have more
than two levels, association is evaluated using the nonparametric Kruskal–Wallis (KW) test
(p ≤ 0.05).

Feature Selection and Multiple-Test Correction

The F test is used to evaluate a differential expression for each gene, following Benjamini–
Hochberg (BH) multiple-test correction.

The F statistic is expressed as

F =
∑K

i=1 ni
(Yi−Y)

2

K−1

∑K
i=1 ∑ni

j=1
(Yi,j−Yi)

2

N−K

,

where Yi,j is the jth observation in the ith group over K groups. N is total sample size, and ni is
the size of the ith group. Yi is the mean within group i, and Y is the overall total sample mean.
F is the ratio of intergroup over intragroup variances and is large if the groups are strongly
different. The p value is determined against the nominal F distribution with (K − 1, N − K)
degrees of freedom.

Classifier Training and Cross-Validation

Random splits + no feature selection Samples are evenly split into training and validation sets.
All features are used to train a shrunken-centroid classifier (Dabney, 2005). Cross-validation
accuracy is the fraction of correctly predicted class labels (UHR subject and UHR control) in
the validation set. This is repeated 1,000 times for each normalization method.

Random splits + feature selection The same procedure was performed as described earlier,
except feature selection in the training set (signature) is performed using F test/BH correction
(p ≤ 0.01).

To demonstrate robustness, given each split, an equal number of random features was
selected, and the cross-validation accuracy based on randomly selected features (equal to
signature size) was determined.
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Functional Analysis Based on Networks

GeneMANIA (http://www.genemania.org/) is used to evaluate functional relationships among
differential genes (Montojo, Zuberi, Rodriguez, Bader, & Morris, 2014). It features an adaptive
weighting method to combine various network data, such that after the networks are combined,
the differential genes interact maximally with each other, while interacting as little as possible
with genes not in the list. This allows GeneMANIA to learn which networks mediate the
underlying functional relationship among the differential genes but also permits the inclusion
of additional genes strongly associated with the differential set.

Enriched gene ontology annotations associated with the finalized network are also re-
ported, and we used these for checking whether the associated network, induced by the set of
differential genes, has strong neurological associations.

RESULTS

Ultra-high Risk (UHR) Blood-Derived Gene Expressions Are Strongly Distinct Between
Data Normalization Techniques

Previously, it was unknown whether UHR subjects possessed distinct but conserved gene ex-
pression profiles. Plotting individual samples using the first 3 PCs without prior feature selec-
tion suggests that they do (Figure 1A).

The existence of strong class-distinguishing signals without a priori feature selection is
good evidence that UHRs form a distinct class. However, this may be a consequence of data-
processing bias. Therefore we rechecked using various data-processing and normalization

Figure 1. Preliminary variance-based analysis. A) PCA scatterplots demonstrating that data nor-
malization can improve the signal-to-noise ratio, enhancing discrimination between sample classes.
Note that no feature selection is done here. Here we compare None, Quantile, GFS, and SVA. GFS
and SVA seem to boost the class discrimination signal the most. B) Distribution of variance at each
PC level shown as a series of bar plots, where the first bar corresponds to PC1, the second corre-
sponds to PC2, and so on. In “None,” note that without any form of normalization, most variance
is concentrated in PC1. A high concentration of variance in the first PC is usually indicative of the
presence of a large amount of technical artifact. All normalization methods appear to balance the
distribution of variance among the subsequent PCs, but also note that the relative scale of remaining
variance after GFS and SVA processing is much lesser than for log-converted data.
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techniques: None, Quantile, GFS, and SVA. The first two techniques are common, GFS is a
signal-boosting transformation, and SVA deals with unwanted heterogeneity.

While the scatterplots present a consistent view that UHR subjects are distinct
(Figure 1A), inter- and intracluster variances differ. In None, interclass variability is lower
relative to intraclass variability. Quantile, GFS, and SVA all produce significant improvement,
demonstrating the importance of normalization. Note that good class separation is expected
in SVA anyway.

PCs are high-dimensional projections based on the expression patterns across thousands
of genes such that each holds information regarding a conserved pattern of expressional change
correlated with various factors (e.g., class, age, gender, ethnicity, and even biological path-
ways; Giuliani, 2017; Goh & Wong, 2016c). Each gene-based variable loads differently onto
each PC, and its loading can be determined from the PCA loading matrix.

We may also investigate PCs for evidence of bias (Figure 1B): A disproportionate propor-
tion of variance in PC1 suggests technical bias, for example, batch effect (Giuliani, 2017; Goh
& Wong, 2016c) or spurious correlations (Giuliani, 2017; Goh & Wong, 2016c). Expectedly,
None holds a high proportion of total variance in PC1, while total variance is distributed more
evenly in the other normalization methods.

The intersample distances change as more PCs are considered, and there is no reason
why subsequent PCs (after PC3) should be ignored. Each PC uniquely encapsulates a distinct
portion of total variance and is mutually orthogonal. We may deploy the PCs more effectively
by quantifying the association of each PC against known factors (class, gender, ethnicity). If
sample class is associated significantly among the top PCs, then this supports the scatterplot
analysis. Conversely, we may also reverse engineer interesting PCs and identify which genes
load strongly onto it (Goh & Wong, 2016c).

To test association, the KW test is used, accounting for scenarios where a factor has
more than two levels. If a PC exhibits strong differential behavior between factor levels (p ≤
0.05), then we assume that this factor can explain this PC. As a rule, for good normalization
methods, the top PCs should be significantly associated with class, followed by other important
factors.

Table 2 is consistent with the scatterplots. To improve visual impact, the KW p values are
summarized to two decimal places, and boldface indicates a significance level below 0.05.
It should be noted that in hypothesis-based statistical testing, the magnitude of the p value is
actually inconsequential; of importance is only whether it falls below the threshold (Goodman,
1992). Although all PCs can be tested, the top 10 are adequate to make our point regarding
factor rankings.

Class effect ranks highly. Interestingly, in Quantile, the top two PCs correlate strongly
with gender and ethnicity, while class is relegated to lower PCs. This does not mean that a
class effect is absent in the first two PCs; rather, these PCs exhibit a stronger association with
other factors. GFS brings class, gender, and ethnicity to the fore (PCs 1–3). Note that GFS is
unsupervised and robust against heterogeneity and technical bias (Belorkar & Wong, 2016;
Wang et al., 2016), so this is strong evidence that UHRs are genotypically distinct.

In SVA, various factors besides class can be considered. Because we only supplied class,
ethnicity and gender effects are suppressed. It is known that psychosis is subclassifiable via
these factors (Bresnahan et al., 2007; Canuso & Pandina, 2007). Our test results agree with
expectations: Class association ranks highly in SVA (PC2), while gender and ethnicity are
relegated to PCs 8 and 9, respectively.

In None, Quantile, and GFS, UHR subjects and controls are consistently separated
(Figure 1), although intra- and intercluster distances vary. PC-based factor association suggests
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Table 2. Significant association between data factors (class, gender, and ethnicity) against each principal component 1–10

Class Indeterminate Gender Indeterminate Ethnicity

PC None Quantile GFS SVA None Quantile GFS SVA None Quantile GFS SVA

1 0.00 0.38 0.00 0.38 0.36 0.02 0.56 0.34 0.35 0.01 0.91 0.97

2 0.16 0.14 0.00 0.00 0.01 0.81 0.85 0.20 0.12 0.69 0.69 0.85

3 0.23 0.05 0.10 0.22 0.25 0.09 0.01 0.85 0.05 0.95 0.01 0.37

4 0.24 0.00 0.21 0.73 0.24 0.19 0.36 0.20 0.76 0.86 0.66 0.82

5 0.00 0.00 0.13 0.21 0.09 0.78 0.16 0.03 0.92 0.91 0.95 0.23

6 0.70 0.02 0.14 0.03 0.25 0.72 1.00 0.00 0.95 0.30 0.37 0.64

7 0.03 0.27 0.33 0.06 0.87 0.59 0.07 0.30 0.07 0.79 0.11 0.20

8 0.12 0.02 0.98 0.14 0.34 0.19 0.94 0.36 0.33 0.62 0.31 0.01

9 0.30 0.22 0.08 0.87 0.23 0.00 0.22 0.01 0.77 0.88 0.90 0.13

10 0.59 0.23 0.86 0.79 0.01 0.42 0.74 0.31 0.59 0.65 0.05 0.50

Note. Boldface indicates significance below 0.05.

that class ranks highly. The unsupervised approach of GFS greatly improves signal-to-noise
ratio, and relevant factors rank highly among the top PCs following GFS transformation.

Statistical Feature Selection Depends Strongly on the Data Normalization Technique

We expect statistical feature selection to provide disparate information regarding differential
genes (Figure 1A). Biological relevance is inferred from statistical testing (differential expres-
sion), but there are many caveats. While different statistical feature-selection methods can yield
different results (Christin et al., 2013; Langley & Mayr, 2015), normalization is also important—
and less well explored.

If normalization has limited impact on feature selection, then given a single feature-
selection method, selected features from differently normalized datasets should be similar.
Genes are selected using the F test/BH correction (p ≤ 0.01). The F test is used to ensure
cross-comparability of the other methods with SVA as it reduces overall variability, while the
degrees of freedom, given any statistical test, remain the same. While this amplifies effect size
(such that if a gene is truly differential, it will be more easily detected), it also increases the
false-positive rate (a nondifferential gene is also likely to be reported as significant). Thus SVA
requires an appropriate correction (provided within the SVA package on the F test).

Based on p value distributions (extreme right skew), it is clear that None is problem-
atic (Figure 2A). A standard cutoff at 0.05 introduces many statistically significant features.
After raising the cutoff to 0.01, ∼6,000 genes are still declared differential (likely most are
false positives). Note that the issue is unresolvable via p value ranking (and selecting the top
n genes), because rank instability increases as p values get smaller (Wang et al., 2016).

The other methods’ p value distributions are more reasonable, suggesting that only a few
genes are differential. Quantile completely reverses the p value distribution (Figure 2A). GFS
is extremely stringent, while SVA predicts slightly more features than Quantile.

None, Quantile, GFS, and SVA select a total of 5,877, 256, 5, and 556 significant
genes, respectively (p ≤ 0.01; Figure 2B). Among these, only one gene (MAGEB16) is shared.
Quantile, GFS, and SVA exhibit deeper overlaps with each other. In particular, GFS shares
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Figure 2. How normalization affects statistical feature selection and prediction modeling.
A) Histograms showing the p value distributions (x axis) following feature selection (based on the
F test) and corrected for multiple testing via BH. Data are processed in four ways (None, Quantile,
GFS, and SVA). The importance of normalization is obvious here. With simple log-conversion, most
gene features will be reported as significant, and we should expect that many of these will be false
positives. The p value distributions for Quantile and SVA are more within expectations, while GFS
tends to be highly conservative here. B) Significant feature overlap based on a cutoff of 0.01. None,
Quantile, GFS, and SVA report a total of 5,877, 256, 5, and 556 significant genes, respectively.
Among these, only one gene (MAGEB16) is common among all four methods. The overlaps with
GFS tend to be deeper with Quantile and SVA. C) Distributions of p values (based on SVA’s set of
p values following F test and BH correction) showing that intersecting genes (common between
Quantile, GFS, and SVA) are more significant than those that are not common among them. We
disregarded the 5,482 significant genes in None, as they are quite likely to be false positives any-
way. D) Cross-validation tests demonstrating that GFS, followed by SVA, tends to pick more relevant
genes and build better models using the shrunken-centroid classifier. Data are evenly split into train-
ing and validation sets. All features were used to train the classifier. Cross-validation accuracy is
the total number of correctly predicted class labels (control and subject) in the validation dataset
(where 0 means no class labels were correctly predicted and 1 means all were correctly predicted).
This is repeated 1,000 times to generate the violin plot, as shown.

80% (four out of five) of its selected features with Quantile and SVA, but not with None. And
these overlapping genes are important: Their associated p values (based on SVA) are far lower
(and therefore more significant) than nonoverlapping genes (Figure 2C). Thus we conclude
that normalization has strong downstream implications for feature selection.
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We are concerned with which approach produces cleaner data. If noise were eradicated,
then even without feature selection, the best approach would produce highly accurate mod-
els anyway. To do this, we turn to cross-validation without feature selection. Both GFS and
SVA reduce heterogeneity, particularly for GFS where the median cross-validation accuracy is
highest at 88% (Figure 2D). This confirms that GFS and SVA remove unwanted confounding
variation, unlike None and Quantile. Therefore we conclude that GFS is the best normalization
technique and is more likely to provide a useful signature.

Gene Fuzzy Scoring Gene Signature Is Functionally Relevant and Beats Randomly
Generated Signatures

GFS selected five genes (IGSF1, LOC653712, LRRTM2, MAGEB16, and PCSK1; p ≤ 0.01). The
stringent cutoff is used for limiting the high number of selected features due to log-conversion.
For phenotypic correlation, we may bolster sensitivity by relaxing the p value cutoff to 0.05
(additional genes are CDH11, CXORF55, CYR61, NOVA2, NTRK2, PARVA, and RBMY1J).

We use the term signature liberally: We do not mean it in the sense that it has valid di-
agnostic capabilities in the greater UHR population but rather use it to indicate a set of genes
being evaluated for class relevance and predictive power, within the confines of our study
design. Although small, the GFS signature can distinguish UHR subjects and controls (hierar-
chical clustering; Euclidean distance; Ward’s linkage; Figure 3A); that is, we may replicate the
strong PC-based interclass segregation (Figure 1A) with only 12 genes.

To determine functional interrelationships, we supplied the GFS signature to
GeneMANIA (Montojo et al., 2014; Vlasblom et al., 2015) and searched for functional links
based on coexpression, co-localization, and shared functional domains (Figure 3B). We also
recovered additional implicated genes (in gray) strongly associated with the signature. The in-
duced gene network (including both signature and implicated genes) is strongly associated with
neurological functions, including genes associated with behavior, signal release, and neuron
projection.

GFS provides the highest cross-validation accuracies (Figure 2D), suggesting that it re-
moved a high amount of noise. Not all genes are useful though; we may simplify model
building and explanation if we isolate only differential genes (via statistical feature selection)
to form signatures. Unfortunately, this is not straightforward. Venet et al. (2011) demonstrated
that inferred signatures across breast cancer studies seldom generalize and do not outperform
random signatures. In fact, the larger the gene signature is, the more likely it is that randomized
gene sets will outperform it. Although the breast cancer signatures in themselves are predic-
tive, they offer no more information than any random assortment of genes, meaning that they
cannot be used to reveal mechanism or biological insight. This occurs because a large fraction
of genes are autocorrelated with cancer but play no role in disease progression. It is unclear if
this is also true for UHR.

We repeated cross-validation with feature selection using the F test/BH correction (p ≤
0.01). It is interesting that feature selection with GFS reduces classifier accuracy (Figure 3C).
This means that although the top five GFS genes have some predictive power, UHRs are quite
heterogeneous. Moreover, despite the drop in classifier accuracy, GFS signatures do much
better than random signatures (Figure 3C).

Feature selection is important. Certainly the F test failed to preserve the original high
accuracy given all features. However, we also removed much noise, such that randomly picked
gene signatures do no better. In comparison, feature selection with Quantile, SVA, and None
appears to preserve, or improve, classifier accuracy, but the random signatures accompanying
these also do well (Goh et al., 2017, Supplementary Figure 1). Inferred signatures derived from
these normalization methods are likely less meaningful.
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Figure 3. Gene fuzzy scoring–based gene signature is functionally relevant. A) An unsupervised
clustering method (hierarchical clustering; Euclidean distance and average linkage) on the set of GFS
significant features (the ones in bold are the original five at a cutoff of 0.01, while the additional
seven are included based on a cutoff of 0.05), yielding good separation between our sample classes.
The cutoff was loosened to 0.05 to include more genes and boost sensitivity in functional analysis.
B) Functional network (derived from GeneMANIA) among the significant GFS genes, pointing to-
ward neurological functions and a high level of interconnectivity among other undetected genes.
Despite its strong presence as a significant feature, MAGEB16 does not appear to be functionally
associated with the other genes. C) Half samples used for training following statistical feature se-
lection (signature), the remaining half for validation. The cross-validation prediction accuracy is the
proportion of correctly predicted validation class labels. In each round, a random signature equal to
the size of the inferred signature is also generated, and its cross-validation performance is evaluated
similarly. Although classifier accuracy fell for GFS (compare Figure 2D), it strongly outperforms
random signatures, suggesting that signatures inferred from GFS are more likely meaningful or
relevant. This is not so for other normalization methods (compare Goh et al., 2017, Supplementary
Figure 1).

It is worthwhile to evaluate feature-selection stability during cross-validation. Goh et al.
(2017, Supplementary Figure 2A; compare Figure 2D) suggested that None/SVA/Quantile-
normalized data still contain some noise and thus that feature selection helps a little, whereas
the GFS-normalized data have less noise, so feature selection does not help as much. More-
over, the feature-selection stability across all normalization is poor, although GFS is still
superior in this respect (Goh et al., 2017, Supplementary Figure 2B). Moreover, the gene
reproducibility index (see Goh et al., 2017, Supplementary Methods) for GFS is the highest
and approximately five times more reproducible than SVA (Goh et al., 2017, Supplementary
Figure 2B).
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DISCUSSION

Limitations of the Current Study and Follow-Up Investigations

The present study demonstrates that UHR subjects possesses distinct blood-based signatures,
but we do not claim generalizability. Ostensibly, the sample size is limited. However, given
careful subject selection to facilitate cross-comparability and minimize background (Qin et al.,
2014), UHR subjects can be consistently distinguished from UHR controls, but normalization
can present disparate views on the underlying biology.

Good normalization methods should minimize or eliminate technical bias and increase
signal-to-noise ratio (i.e., amplify signal, reduce noise). We should not rely on feature-selection
methods to work properly without proper data cleaning. As it turns out, most feature-selection
methods are not resistant to technical bias or noise (Goh & Wong, 2016c).

Commonly used normalization methods fall short, while newer approaches, designed
for dealing with heterogeneity, are superior. The unsupervised approach of GFS is promising.
In follow-up studies, we aim to determine if GFS signatures are generalizable in larger cohorts
and across a wide variety of independent studies on the same phenotype.

This is the first study to investigate a genetic basis underlying UHRs. We are positive that
specific blood-based gene expression signatures from UHR subjects can be elucidated, which
can in turn facilitate accurate early detection and therapeutic intervention.

We are also aware that issues pertaining to blood–brain gene expression correlations
are not addressed (Cai et al., 2010; Jasinska et al., 2009). We avoid overinterpretation of
mechanism but merely point out that the GFS blood signature is phenotypically coherent. In
subsequent studies, we aim to relate blood- and brain-derived UHR gene signatures.

Although we focus mostly on the downstream effects of normalization in functional
analysis, we also introduce some useful analytical techniques. PCA and normalization are
discussed in subsequent sections. Here we comment on our cross-validation setup where we
randomly sampled from UHR subject and control, performed a standard feature selection,
trained a classifier, and obtained a cross-validation accuracy. This is standard procedure, but
it does not tell us whether this accuracy is meaningful in that the selected features are pheno-
typically relevant in an exclusive sense (Goh & Wong, 2016b). This can be counterchecked by
randomly sampling an equal number of features and checking if the derived cross-validation
accuracies do better. An empirical p value for the cross-validation accuracy is the number of
times a random signature does better than the observed. This is a powerful approach, because
it deals specifically with the issue of random signature superiority (Venet et al., 2011): If the sig-
nature is relevant, it must be exclusive, and it must perform better than any random assortment
of genes. Intuitively, a signature passing this check is more likely to be generalizable.

Finally, when study designs are imbalanced, it is important never to derive statistics for
each gene across samples, as this would lead to test-set bias during classifier building (Patil
et al., 2015). Test-set bias occurs when the classification of any subject or tissue in a dataset is
dependent on the composition of the other subjects or tissues as the expression of each protein
or gene is normalized with respect to the entire dataset (Patil et al., 2015). Any gene signatures
derived based on any normalization strategy that has dependency across subjects or tissues
of the test set will be irreproducible when the population changes composition or size. Thus
readers should be careful when encountering any normalization method that adjusts across
multiple subjects or tissues rather than information strictly within a subject or tissue itself (Goh
& Wong, 2016a). The problem is easily avoided simply by not normalizing across samples
but rather within samples, as we have done here. However, the unsolved problem is that we
have less information regarding variance in UHR controls, and this can indeed undermine our
analysis methods. But as mentioned earlier, we do not claim generalizability but work within
the confines of this study.
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Normalization Is Vital and Contributes Toward Reproducible Signatures

It is clear that log-conversion (None) alone is insufficient and may produce false effects. The
oft-used quantile normalization (Quantile) provides considerable improvement but may not be
good enough for practical applications. Finally, the highly sophisticated technical variability
removal method, SVA, is powerful, but as a supervised method, it is susceptible to the veracity
of the class labels: If wrong, for example, owing to misdiagnosis, then SVA can make mistakes.
Finally, we introduce the unsupervised signal-boosting transformation GFS, which provides the
highest data-cleaning utility (Figure 2D).

Although GFS’s performance suffers when combined with a feature-selection approach,
it is the only method that can strongly outperform random signatures (Figure 3C; Goh et al.,
2017, Supplementary Figure 1). This is vital, because when applied on random subsets of
data, classifiers built with GFS are “meaningful.” If classifiers built with random genes are
accurate as well, this means that many genes in the dataset are noncausally correlated with
the phenotype, such that any inferred signature has no real meaning anyway. Although the
other approaches generally produce higher classifier accuracies following feature selection,
only the GFS-derived classifiers outperform the randomly built classifiers. This provides greater
confidence that the five-gene GFS signature inferred from the full dataset is not associated with
the UHR phenotype simply by chance.

PCA Can Be Used More Effectively

PCA scatterplots are commonly used for determining the presence of batch effects and checking
sample separation before and after feature selection. Typically, analysis is limited to PCs 1–3,
with the assumption that most variance is contained therein (the remaining variance being
uninteresting). This is not always the case where, following certain normalization approaches,
the distribution of variance among PCs becomes more balanced (Figure 1B). Although each
subsequent PC contains a lower proportion of total variance, it is not negligible, and there
is no valid reason to discard any of them. Conversely, a high proportion of variance in PC1
suggests high technical bias (Goh & Wong, 2016c). It is important to deal with bias, instead
of blindly accepting the top three PCs.

We may use PCs for conducting correlation checks with known factors: If technical
batches are known, we may determine which PC is associated with batch. If correlated with
PC1, batch effect dominates, and skews feature selection. Similarly, examining PC correlations
with other factors determines if they contribute strongly and meaningfully to the model. In
particular, we expect gender and racial effects to be present. Indeed, these are correlated with
top PCs, except in SVA. (This is expected, as we did not supply this to SVA, and gender/racial
effects were thus suppressed.)

Detailed PC examination reveals the influence of various factors, but we need to fig-
ure out which genes are responsible. This is possible (but we did not deploy this technique
explicitly here): Suppose PC1 is strongly associated with batch; we can go back to the PCA
loading matrix and isolate genes that load strongly onto PC1, thus isolating the batch effect–
susceptible genes (Goh & Wong, 2016c). If PC1 is strongly and uniquely associated with class,
then we can extract the “class differential” genes from there. This provides useful information,
in addition to statistical feature selection.

Certainly PCA is a very versatile technique, and it can be used more creatively, to
powerful effect.

UHR Phenotype Class Is Inferable via Blood-Based Signatures

Although our sample size is moderate, we are able to consistently observe strong differences
between UHRs and non-UHRs, even without feature selection. Examination of the gene signa-
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ture derived from GFS suggests association with known psychosis genes. Many of these genes
are implicated in psychosis and schizophrenia: PCSK1 is reported to be dysregulated (Hokama
et al., 2014). LRRTM2 is a maternally suppressed gene that is associated paternally with hand-
edness and schizophrenia (Francks et al., 2007). NTRK2 together with BDNF is associated
with paranoid schizophrenia (Lin et al., 2013). PARVA is associated with cognitive control, the
loss of which is a core trait in schizophrenia (Lewis, Curley, Glausier, & Volk, 2012). Although
some genes (e.g., MAGEB16) are reported consistently, they are immune associated and do
not seem consistent with the UHR phenotype. However, the immune system and schizophre-
nia have a long history of intricate association (Horvath & Mirnics, 2014; Jenkins, 2013;
Muller & Schwarz, 2010; Vetlugina, Lobacheva, Semke, Nikitina, & Bokhan, 2016). Although
it is useful to be able to phenotypically relate gene signatures, doing so does not offer
nonquantifiable evidence. Therefore additional means to demonstrate signature specificity
and power are necessary.

Taken together, the results suggest that blood-based diagnosis is useful for characterizing
UHRs.

CONCLUSION

A distinct peripheral blood-based gene expression signature from UHR subjects is identifi-
able. Although feature-selection approaches are important, data normalization is equally vital,
as procedures that deal with heterogeneity can give rise to more stable signatures (following
feature selection) with high predictive power.

Given good normalization, and demonstrated independent reproducibility, blood-based
gene signatures have the potential to help identify UHRs accurately and, it is hoped, improve
clinical outcomes via early intervention.
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