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ABSTRACT

Depression affects one in nine people, but treatment response rates remain low. There is

significant potential in the use of computational modeling techniques to predict individual

patient responses and thus provide more personalized treatment. Deep learning is a

promising computational technique that can be used for differential treatment selection

based on predicted remission probability. Using Sequenced Treatment Alternatives to Relieve

Depression (STAR*D) and Combining Medications to Enhance Depression Outcomes

(CO-MED) trial data, we employed deep neural networks to predict remission after feature

selection. Treatments included were citalopram, escitalopram, bupropion SR plus

escitalopram, and venlafaxine plus mirtazapine. Differential treatment benefit was estimated

in terms of improvement of population remission rates after application of the model for

treatment selection using two approaches: (1) using predictions generated directly from the

model (the predicted improvement approach) and (2) using bootstrapping for sample

generation and then estimating population remission rate for patients who actually received

the drug predicted by the model compared to the general population (the actual

improvement approach). Our deep learning model predicted remission in a pooled

CO-MED/STAR*D dataset (including four treatments) with an area under the curve of 0.69

using 17 input features. Our actual improvement analysis showed a statistically significant

2.48% absolute improvement (corresponding to a 7.2% relative improvement) in population

remission rate (p = 0.01, CI 2.48% ± 0.5%). Our model serves as proof-of-concept that deep

learning approaches, with further refinement and work to address concerns about differences

between studies when multiple datasets are used for training, may have utility in differential

prediction of antidepressant response when selecting from a number of treatment options.

INTRODUCTION

Major depressive disorder (MDD) is the greatest cause of disability-adjusted life-years lost glob-

ally and affects more than 300 million people at any given time (World Health Organization,

2017). MDD strongly associates with suicide (Turecki & Brent, 2016) and early mortality
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(Saint Onge, Krueger, & Rogers, 2014) and represents a significant cost to patients, fami-

lies, health care systems, and the economy (Kessler, 2012; Stewart, Ricci, Chee, Hahn, &

Morganstein, 2003). While clinical guidelines (Kennedy et al., 2016) define the optimal treat-

ment outcome for depression to be full remission of symptoms, many patients will not reach

remission after a first or second antidepressant treatment (Rush et al., 2006).

Professionals employ many different interventions to treat depression, but little is known

about which patients will respond best to which treatments, and many possible patient char-

acteristics are important in personalization (Perlman et al., 2019). The current gold standard of

treatment is the application of treatment guidelines, such as the Canadian Network for Mood

and Anxiety Treatments (CANMAT) (Kennedy et al., 2016). These guidelines help clinicians

determine which types of treatment are evidence based and when they are to be used dur-

ing the course of a patient’s depression. They also help clinicians decide when to initiate

pharmacotherapy, with the CANMAT guidelines recommending medication for patients with

symptoms with moderate or greater severity. In this work, we explored the promise of using

machine learning to develop personalized medicine approaches to MDD treatment to improve

remission rates. We will elaborate on an approach that allows for not only prediction of re-

mission but the selection of an optimal treatment from a set of options. We term this two-step

process differential prediction.

Research in machine learning work has previously borne fruit in personalizing depres-

sion treatments (see Iniesta et al., 2016; Lee et al., 2019; Lin et al., 2018). Chekroud et al.

(2016) used machine learning to predict remission for patients administered citalopram in the

STAR*D study with roughly 65% accuracy using only clinical and demographic variables. Ini-

esta et al. (2018) used machine learning to predict remission in the Genome-based Therapeutic

Drugs for Depression (GENDEP) study using clinical, demographic, and genetic information.

In addition to predicting remission, there is great clinical utility in models that help assign

patients to treatments in a way that improves their chances to remit. DeRubeis et al. (2014)

produced the Personalized Advantage Index (PAI), which helps determine if patients are more

likely to benefit from one treatment over another. In addition, specific alleles of genetic poly-

morphisms mediating processes such as stress response, immune regulation, and neurotrans-

mission were relevant for predicting response to different antidepressants (Uher, 2011).

Most work to date has focused on predicting whether a patient would benefit more from

one of two treatment options. However, personalized medicine models should be able to

assess differential benefit between more than two, that is, multiple treatments. In addition,

these models should be able to incorporate maximally accessible information, such as simple

clinical and demographic information. In addition, modeling procedures should be flexible

enough to accommodate additional multimodal data (such as information coming from genet-

ics or neuroimaging) to take advantage of potential biomarkers. Finally, useful personalized

medicine models must produce interpretable results—clinicians must be able to understand

which specific patient characteristics drive remission.

Deep learning in a “deep neural network” is a collection of very simple mathemati-

cal operations called “artificial neurons,” a classic model dating back to Rosenblatt’s (1957)

“perceptron,” networked together and arrayed in layers. Modern computing allows for fitting

these networks of simple artificial neurons to model very complicated relationships, mak-

ing for powerful machine learning. Deep learning has recently gained popularity due to

its superior predictive performance on various classification tasks, such as image recogni-

tion (Goodfellow, Bengio, & Courville, 2016). We set out to use deep learning to analyze

data from two well-known datasets, Sequenced Treatment Alternatives to Relieve Depres-

sion (STAR*D) and Combining Medications to Enhance Depression Outcomes (CO-MED), to
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produce a differential treatment selection model that could help select between more than

two treatments. Crucially, we used recently developed methodology to validate that model

on data unseen by the algorithm. This provides a sense of what clinical benefit (in terms of

population remission rates) could be expected when using the model to assign treatments to

future real-world patients. We found that an algorithm that only required minimal clinical and

demographic data could have a clinically significant impact on population remission rates.

We also chose to create one model of differential prediction (instead of separate models for

each drug). This was to ensure that we were truly capturing a differential prediction and not a

prediction of general treatment response. We also chose not to create models specific to each

drug as we wished to be able to capture differences between treatments directly, which allows

us to use statistical techniques to estimate potential clinical utility of the model. To maximize

accessibility and impact of our approach, we sought to create a model that did not rely on

markers that are expensive to collect (such as genetics) but instead only incorporates clinical

and demographic information. In this process, we strived to make our model interpretable at

the individual patient level.

METHODS

Data

We analyzed patient-level data from two major trials: CO-MED (Rush et al., 2011) and the

first level of STAR*D (Trivedi et al., 2006). CO-MED enrolled 665 outpatients with nonpsy-

chotic depression who were randomized to three treatment arms: escitalopram and placebo,

bupropion and escitalopram, or mirtazapine and venlafaxine. The purpose of this trial was

to assess whether combination treatment was superior to monotherapy. The result was that

similar remission rates were observed in each arm. STAR*D is the largest pragmatic trial of

depression treatment to date. In the first of the four levels of the study, all patients were treated

with citalopram, and the remission rate was 33% (n = 2, 757; see case selection). Using these

two studies was ideal for our analysis because they (a) included similar outcome measures, the

Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR16); (b) recruited simi-

lar patients, those with at least moderately severe depression as determined by the Hamilton

Depression Rating Scale (HDRS) and therefore for whom pharmacotherapy was appropriate;

(c) included patients treated in both psychiatric and general practice settings; (d) collected

similar clinical and demographic information; (e) treated patients for similar lengths of time,

12 weeks in the acute phase of CO-MED and 12–14 weeks in STAR*D Level 1; and (f) used

measurement-based care protocols to adjust doses, that is, doses were adjusted based on pa-

tient symptom scores. Unless otherwise noted, we defined remission as being a score of 5 or

less on the QIDS-SR16. Treatments included were citalopram (from STAR*D), escitalopram

(plus placebo), bupropion SR plus escitalopram, and venlafaxine plus mirtazapine (all from

CO-MED). Treatments included were citalopram (from STAR*D), escitalopram (plus placebo),

bupropion SR plus escitalopram, and venlafaxine plus mirtazapine (all from CO-MED).

In STAR*D, our focus was to assess subjects at baseline and predict whether they went

into remission after Level 1 treatment was administered (between Weeks 2 and 14). We re-

moved 27 subjects who either did not have at least moderately severe depression (i.e., a score

of at least 16 on the HDRS questionnaire), did not complete at least 1 week of treatment, did

not return for a visit at Week 2, or did not return for a depression assessment in their final

week.

We then merged the STAR*D dataset (2,757 subjects) with the CO-MED dataset (665

subjects), resulting in 3,222 patients and 213 numeric characteristics measured for each (all
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features that the two datasets did not have in common were dropped). The result of the merge

can be thought of as an experiment with four different treatment groups (three from CO-MED

and one from STAR*D). The variable that housed the patients’ assignments to one of the four

treatments we denote “drug assigned.” This variable allows our algorithm to locate differential

treatment benefit via modeling interactions with the 213 patient characteristics.

We chose to consider citalopram and escitalopram as separate treatments for two main

reasons. First, previous evidence has shown that these treatments may have different levels of

efficacy: the CANMAT 2016 guidelines for the treatment of depression review the literature and

find some evidence for the superiority of escitalopram to citalopram (Kennedy et al., 2016). In

addition, in CO-MED, escitalopram was provided alongside a placebo, which meant that the

experience of treatment would likely have been different from patients receiving open-label

citalopram monotherapy. Keeping these two treatments separate was therefore more prudent

and further allowed us to evaluate differential benefit between a larger number of distinct

treatments.

Data Processing and Feature Selection

From our combined dataset of 3,222 subjects, we first held out 200 subjects who were later

used for the predicted improvement differential analysis, described later. We ensured that these

were sampled to reflect the distribution found in the original datasets. This meant that 20%

of the held-out 200 subjects were from the CO-MED study and 80% were from the STAR*D

study. The remaining 3,022 subjects were then split into a training and a test set (80% training,

20% test). This 20% test set, as well as the initial 200 subjects extracted previously, were both

held out of feature selection and final model training. Both our CO-MED and STAR*D models

had imbalanced classes because the majority of subjects did not remit (only 34% of subjects in

STAR*D and 36% of subjects in CO-MED remitted). Owing to this class imbalance, we used

stratified sampling (Lang, Liberty, & Shmakov, 2016) when creating our training and test set for

our assessment phase. This ensured that we were training and testing on mutually exclusive

sets with similar endpoint distribution. This equalization prevents bias toward learning and

predicting the majority class. We did not employ oversampling or undersampling, as this

could carry risk of information loss or overrepresentation (He & Garcia, 2009). We emphasize

that the 20%of the data onwhich the final model was tested, as well as the 200-patient holdout

set used for the predicted improvement analysis, were true holdout sets; these data were not

seen by any of our employed feature selection or model training algorithms prior to testing.

In addition, these holdout sets were selected randomly and were not manually inspected or

constructed.

After creating our training and test splits, we sent our training data through a feature

selection pipeline to select a manageable subset of the original 213 patient characteristics. This

pipeline began with expert inspection of the features’ meta-information (not of the data values

themselves) to remove duplicate or administrative variables of no clinical significance. We then

employed a variety of methods to curate the remaining features to ensure the retention of those

that are salient without sacrificing prediction performance. Our motivation for this curation is

to both reduce computational complexity and to increase ultimate interpretability (Keogh &

Mueen, 2017). Our variable curation procedure can be broken down into several steps, each

progressively eliminating more variables: (a) variance thresholding (removing variables with

less than a certain variance), (b) recursive feature elimination with cross-validation (RFECV),

and (c) feature importance extraction. Each of these steps has tuning parameters. The parameter

values were selected by using prediction metrics from the deep learning model. Optimistic
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bias is commonly an issue with thorough feature selection processes. To account for this, we

extracted our test set of 200 subjects before performing these methods. These methods were

implemented from the Python package Scikit-Learn (Pedregosa et al., 2011). Figure 1 details

this process within the “Phase 1” subheader. Future analyses can use knockoff methods that

control false discoveries (Candès, Fan, Janson, & Lv, 2018).

After expert inspection of variable meta-information, the next step was variance thresh-

olding (removing variables with less than a certain variance). We ran various models under

different variance thresholds and found that setting the threshold to 0.2 yielded the best per-

forming model in terms of accuracy of remission prediction. This means that any feature with

a variance less than 0.2 across all samples was removed. When testing various thresholds,

we initially tested and analyzed CO-MED and STAR*D individually to ensure that known rel-

evant features in the literature were not being removed. The 0.2 threshold found was chosen

because it was optimal for CO-MED and STAR*D individually, as well as when the datasets

were combined. We then performed RFECV using three folds with a random forest classifier.

This method produced a subset of features considered the strongest with regard to predicting

our target of remission. We utilized RFECV because there was a large number of features, and

our objective was to reduce the number of those features based on a combined importance;

that is, we wanted to identify a smaller group of features that could strongly predict remission

(i.e., our objective was to capture the information-rich features). We opted for a random forest

classifier owing to its robustness to hyperparameters (e.g., the number of classification trees

and the number of variables to try for the split rules in the inner condition nodes). To further

ensure the robustness of the important features selected, and reduce optimistic bias, we used

threefold cross-validation. We then assessed the stability of the features selected by RFECV

using randomized lasso. This methodology takes random subsets of subjects and a random

subset of features and runs a feature selection algorithm on that subset to select the top fea-

tures. It runs this process 200 times and, upon completion, calculates the percentage of the

time a given feature was selected as a top feature. We then removed the features that did not

exceed our “importance” threshold of 75%. This resulted in the final feature set described in

Figure 2.

After the dataset was pared down to the features found in our feature selection pipeline,

we performed the two main analyses: remission prediction and the differential treatment bene-

fit analysis. The remission prediction accuracy analysis was itself divided into two independent

steps: 10-fold cross-validation and, separately, training a model on the 80% training data and

testing it on the 20% holdout data. For all model training, binary remission was the predicted

target. The neural network architecture and configuration used for model training are described

later.

We used 10-fold cross-validation to determine if the features selected were likely to cre-

ate a useful model that could then be used in the differential analysis. Cross-validation was

accomplished by combining the dataset through sequentially merging our training and valida-

tion sets and using that merged dataset to test our features and model configuration by training

and validating our model in a 10-fold process. This analysis did not produce a single trained

model but rather assessed how well our features and model configuration predicted remission.

These metrics are shown in our results and are reported as macro metrics, which are calcu-

lated by calculating the metric for each class and then averaging these, taking into account

performance on both classes. Once it was clear that the features selected would produce a

useful model, we then performed our second analysis using the training and validation set we

created before feature selection. It is important to note that these sets were not affected by the
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Figure 1. Drug differential analysis. Phase 1 (data processing): The raw dataset was preprocessed; split into a test, train, and validation set;
and then fed through a feature selection procedure to produce a separate final dataset. This final dataset was our train and test set combined
and only included our final features. Phase 2 (neural network development): We configured our neural network and used our final dataset to
perform k-fold validation to produce metrics. During training, we iteratively optimized our neural network tuning parameters. Phase 3 (model
training and testing): We then used our model configuration from Phase 2 and our train and test set from Phase 1 with our top features also
from Phase 1 to train and validate a model. Phase 4 (predicted improvement analysis): We iterated through each subject of our differential
analysis set. For each patient, we used our neural network with each possible drug to find the probability of remission with that drug. Once
the patient had a probability of remission for each drug, the drug with the highest probability was retained. Once all 200 patients had a
probability of remission, we took an average of those probabilities. This process was run five times, and the average was computed. Phase 5
(actual improvement analysis): We used k-fold validation with our entire dataset. This entire dataset is a combination of the training set and
both holdout sets. The patients within the test set for each fold were used to perform the differential analysis. This analysis was conservative,
as we only retained subjects if the drug for which our neural network produced the highest probability of remission was actually the drug they
received in the study. We then took the average of all patients kept after all folds from the k-fold validation process.
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Figure 2. The 17 most important features in the differential treatment prediction model.

cross-validation exercise. We trained a deep neural network model using the training data;

that trained model was then validated with our 20% testing set. This trained model yielded

similar results to our cross-validation model (see results) and was then used to perform our

predicted improvement differential analysis on the 200 subject test set.

Differential Treatment Benefit Analysis

Our first “naive” experiment was aimed at estimating the performance of the model if it was

applied blindly to a “new” clinical population (our holdout sample of 200 patients). Once

we had completed this process once, we then repeated it five times (without repeating feature

selection) to generate five different holdout sets of 200 patients. Our predicted improvement

differential analysis results are reported as the average of these five repeats. To get a probability

of remission, we passed each subject in the holdout sample four times through the final model,

once for each possible drug in the dataset. The output of the forward pass was the probability

of remission for that subject for that given drug. For each of the 200 subjects, we took the

drug with the highest probability of remission and obtained the mean remission rate of the

200 subjects. Finally, we took the difference between the mean remission rate of the entire

dataset and our mean remission rate for the 200 test subjects.

In the predicted improvement version of the analysis, we looked at hypothetical cases in

which we did not necessarily know the outcome of patient–drug pairing. Our second “actual

improvement ” analysis only considered the nonhypothetical cases in which we knew the real

outcome of giving a specific treatment to a patient. This second analysis was inferential, and
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details of its methods are found in Kapelner et al. (2020). This analysis answered the question,

Does our deep neural network personalization model outperform a null model—does it im-

prove patient outcomes more than chance treatment allocation? For this null allocation, we

simulated 1,000 bootstrap samples: we resampled from the original dataset with replacement,

trained models through 10-fold cross-validation and computed an “improvement score” that

compares the chance remission rate with the improved remission rate found using the per-

sonalized allocations from our deep neural network model. To exclude hypothetical cases,

we compared improvement scores between patients who actually received, by chance, the

optimal drug predicted by the model to the rest of the study population.

Neural Network Architecture and Configuration

Given the structured nature of the data collected in these studies, we opted for fully connected

dense neural networks (DNN). To build, train, and evaluate all of our DNN configurations, we

employed the open source package Vulcan.1 DNNs allow us to capture complex, nonlinear

relationships likely present in psychiatric data (e.g., mediation and moderation effects, which

are unknown a priori). We limited our model’s learning capacity (with the use of a shallow

network) to explore more of the solution space before finding an optimal location. Our optimal

network had a single hidden layer with 17 nodes using the scaled exponential linear unit acti-

vation function (Klambauer, Unterthiner, Mayr, & Hochreiter, 2017), while the final prediction

layer used the softmax function to determine remission probabilities. This simple structure pro-

vides insurance against overfitting. We one-hot encoded our response variable to create a mul-

ticlass problem that uses categorical cross-entropy as the optimizer cost function (Goodfellow

et al., 2016). We used the Adam optimizer for learning the network parameters (Kingma &

Ba, 2014) with a learning rate of 0.0001. To further help with model generalization, we used

a 50% dropout rate (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dur-

ing the evaluation phase, we used 10-fold cross-validation. Each fold allowed the model to

train for 200 epochs. For each model trained, remission was considered the target prediction

outcome. Once again, the variable “drug assigned” was included as part of the feature set

to ensure that the DNN has an opportunity to learn how the drug assigned interacts with the

17 patient-level characteristics. Drug-specific remission probabilities were obtained from our

final model by varying the drug assigned variable, holding other patient features constant.

Note that we chose in this article to compare deep learning to the existing technique

described by Chekroud et al. (2016) to determine if it was a viable technique on this—and

potentially similar—datasets. As such, there was no search over algorithm types, as we already

had a comparator to deep learning available.

RESULTS

In our differential treatment prediction analysis, we conducted two separate experiments to

determine the relative increase in population remission rates when using the treatment recom-

mended by our model compared to the treatment patients were assigned in the study. These

experiments were done on the combined CO-MED and STAR*D datasets using the same

1 The Vulcan platform used for this work is open source and can be found online at https://github
.com/Aifred-Health/Vulcan. The data are available through the National Institute of Mental Health data re-
quest platform. Using the descriptions of the model available within this article, the publicly available data, and
the open source Vulcan platform, investigators will be able to reproduce this model.
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trained DNN model built after feature curation (section “Data Processing and Feature Selec-

tion”). After DNN training, the out-of-sample performance was 0.69 macro area under the

curve (AUC), 0.70 macro positive predictive value (PPV), 0.70 macro negative predictive value

(NPV), 0.72 macro sensitivity, 0.72 macro specificity on 10-fold cross-validation, and a 0.69

macro AUC, 0.60 macro sensitivity, 0.60 macro specificity, 0.63 macro NPV, and 0.63 macro

PPV, indicating that the selected features could produce a useful model in a robust fashion.

We now move to the results of the predicted improvement analysis of differential treat-

ment benefit. This analysis produced estimates of projected improvement in population re-

mission rate, under the assumption that the model performs as expected in a new clinical

population. It provides an “optimistic” view of the model’s potential benefit for improving

remission rates, allowing for one bound on the range of effect sizes that might be expected in

a clinical trial (the lower bound to this range is provided by the actual improvement analysis).

Over five iterations (as described earlier), the predicted improvement analysis produced an

∼11% in the population remission rate, from 34.33% to 46.12%—a relative improvement of

over 30%—when using our neural network to assign patients to drugs when compared with

the baseline study drug assignation.

While the predicted improvement model produces one estimate of model differential

treatment selection benefit that represents expected results if the model functions as expected,

its estimate is hypothetical. In contrast, the actual improvement approach provides an estimate

of differential benefit based on nonhypothetical cases. This inferential approach provides a

convincing test of the value of a treatment selection model because it only considers the dif-

ference between patients who actually received the treatment selected by the model and those

who were randomly allocated to treatment. We observed a significant improvement of 2.5%,

p = 0.01 (CI 2.48% ± 0.5%) from 34.33% to 36.8% population remission rate, a relative im-

provement of 7.2%. The risk ratio for improvement was thus 1.07, and the odds ratio was 1.11,

compared to baseline medication assignment.

The model target was remission prediction, but the purpose of the model is to be able to

predict differences between treatments at the level of the individual. We tested its capacity to

do the latter in two ways. First, we looked across all five test sets of 200 patients used for the

predicted improvement analysis to see the average difference in remission probability between

the highest and lowest probability treatments and found this to be 11% (±0.34%). Second,

in Supplementary Table 6, a random sample of 10 patients from 1 of the 200 held-out sets

is provided that demonstrates the varying remission probabilities assigned to each treatment,

patient by patient.

DISCUSSION

We used deep learning to create a personalized medicine model that is useful as a proof-

of-concept for differential treatment selection. We combined data from the CO-MED and

STAR*D datasets to produce a pooled dataset with four different treatment types. Our main

goal was to demonstrate that our model was capable of performing differential treatment selec-

tion and to estimate improvement in patient outcomes. We produced a well-validated model

via cross-validation within the test set and validation on a held-out dataset, and only then did

we apply the model to our holdout sample of 200 subsampled but mutually exclusive patients.

By retaining the treatment selection (the drug class) as a feature in our model, we could then

generate predictions for each drug class for all 200 held-out patients. With these predictions,

we estimated the remission rate for these patients had they been assigned a drug based on
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our model, showing an 11% average increase in population remission rates. This potential

remission increase of 11% is clinically significant, as it increases remission by one-third over

measurement-based care alone in STAR*D and CO-MED. We then further validated our results

by proving statistically that our personalized models beat chance remission via a conservative

bootstrapping procedure, which demonstrated a significant increase in overall remission rate

of 2.5%, p = 0.01. This actual improvement analysis’s bootstrap estimate of out-of-sample

improvement is only valid asymptotically and also has a large standard error. Thus the pop-

ulation remission improvement estimated using this analysis does not accurately depict the

likely effect size of the differential prediction benefit; rather, it represents a “lower bound” of

our approach’s utility. We believe our true personalization benefit will likely lie between the

numbers produced by the actual improvement and predicted improvement analyses.

A critical contribution of our work is extending these evaluation metrics to models that

cover a number of treatment options. This is significant because most previous literature has fo-

cused on helping to select between two treatment options, when in clinical practice, clinicians

are faced with more than a dozen treatment choices. Models that can help select between a

number of different treatments may have significant clinical impact when properly validated

and implemented.

As can be seen in the Supplementary Materials, a version of our model trained only on

STAR*D generalizes to all three arms of CO-MED, in contrast to the model by Chekroud et al.

(2016), which only generalized to two of the three arms. Importantly, there was significant

overlap between the 25 features included in the Chekroud et al. model and the 14 included

in our own (Supplementary Table 1). This initial analysis demonstrates that deep learning can

provide improved results when compared to other machine learning techniques while poten-

tially using fewer patient characteristics, allowing for easier clinical implementation. The deep

learning advantage is small at present, but deep learning has often been found to significantly

outperform other machine learning techniques as the size of the dataset increases (L’Heureux,

Grolinger, & Capretz, 2017). Thus finding even a small advantage for deep learning in this

fairly small (by deep learning standards) dataset leads us to speculate that deep learning will

perform significantly better than other techniques when we have more subject data.

We examined the population remission rate, and as such it is difficult to determine the

benefit for each individual patient. Future analyses, along the lines of the PAI (DeRubeis et al.,

2014), may be able to help estimate the individual benefit with model-predicted treatment.

However, what is intriguing is that despite equal effectiveness of these treatments at a popula-

tion level, we are able to use individual patient differences in predicted remission generated

by varying the assigned drug to improve the overall remission rate. If all treatments were truly

equally effective for all individuals, we could have expected a model that approximated but

did not improve upon the remission rate. The finding of a projected improvement supports a

personalized medicine approach based on individualized prediction of response to treatment.

Deep learning has often been labeled as a “black box,” meaning deep learning mod-

els can be a challenge to interpret (Samek, Wiegand, & Müller, 2017). Interestingly, when

using only clinical and demographic measures, we find that deep learning systems provide

a list of features that clinicians could interpret. As demonstrated in Box 1, the most impor-

tant features used in the prediction for each individual patient can be recovered, providing

insights personalized to that patient. This “personalized prediction report” demonstrates that

deep learning–based tools may be able to provide information that is useful for understanding

individual clinical cases.
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Box 1. Examples of Differential Predictions for Two Subjects (“Personalized

Prediction Reports”)

Here we show “reports” for two patients showing the drug they received in the study

and whether or not they went into remission; the drug the network predicted and

the predicted remission rates for that drug and the drug the patient actually received;

and the five most important features for that patient based on the neural network (all

features were used for both patients, but the five listed were weighted more by the

network for that patient).

Subject A was originally given escitalopram and went into remission. Our neural

network found escitalopram to have an 87.57% chance of remission. The five most

important features for this patient and the attendant responses were as follows:

• Total monthly income: $2,200

• Years of formal education: 12

• Experienced weight increase within the last 2 weeks? Has gained 5 pounds or

more

• Have you been feeling down, blue, sad, or depressed? Feels sad less than half

the time

• Do you eat a lot when not hungry? No

Subject B was originally given citalopram and did not go into remission. Our neural

network found citalopram to have a 38.03% chance of remission, while bupropion

SR & escitalopram had a 60.43% chance of remission, indicating that changing the

medication may have been beneficial for this patient. The fivemost important features

for this patient and attendant responses were as follows:

• Have you ever witnessed a traumatic event? No

• Did reminders of a traumatic event make you shake, break out into a sweat, or

have a racing heart? No

• Have you had any trouble falling asleep when you go to bed? Takes at least 30

minutes to fall asleep, more than half the time

• Have you been feeling down, blue, sad or depressed? Feels sad less than half

the time

• Do you eat a lot when not hungry? Yes

It is interesting to note that there are two categories of features in Figure 2: those likely to

predict overall probability of remission and treatment-specific features. For example, level of

education and income—which have both been found in other studies of remission prediction

(Carter et al., 2012)—are both unlikely to be specifically related to any one drug’s mechanism,

as opposed to sleep pattern, which may be relevant to a particular drug’s mechanism. It is

important to review the features that have been identified in our model and compare them to

models in previously published work, and a full discussion is included in the Supplementary

Materials. Specific symptoms retained by our model may contribute to differential prediction.

For example, in the Individualized Patient Reports (Box 1), Patient B was predicted to do better

with a combination of bupropion and escitalopram, and one of the five most important features

in that prediction was a tendency to eat a lot when not hungry, which is interesting given the
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fact that bupropion is often used clinically in cases of hyperphagia or when weight gain is to

be avoided (Anderson et al., 2002; Patel et al., 2016).

Beyond the demonstration of a differential treatment prediction tool for more than two

treatments, we also provide evidence, in accordance with recent papers (Lin et al., 2018), that

deep learning can be readily applied to psychiatric datasets. This is an important develop-

ment in the field of computational psychiatry, as deep learning is well suited to the analysis of

multimodal data and may help bring together data from neuroimaging, genetics, or wearable

technology with clinical and demographic measures.

It remains to be seen if the effect we estimate materializes in a clinical environment. That

being said, our model’s AUC of 0.69 is potentially clinically significant because of the low

baseline response rate to antidepressants. Any tool that could help improve the accuracy with

which clinicians can identify which patients are likely to benefit from which treatments may

be welcomed by the clinical community. This is especially true given the low risk of choosing

“wrong” (i.e., choosing an ineffective first-line antidepressant, which occurs commonly) and

the high reward of choosing “right”—choosing the right medication for the individual patient

and reducing time to remission. In this context, a model with a similar performance to our

own might be clinically significant because it likely will outperform the status quo without sig-

nificantly increasing the risk of adverse events. In addition, it is worth considering the model

in terms of potential benefit to the population. Using our model’s treatment recommendation,

we estimate that between 80 and 354 more patients in the dataset would have reached remis-

sion after a single trial of pharmacotherapy (based on the actual improvement and predicted

improvement analyses, respectively).

Even if AI-powered decision support tools continue to improve and demonstrate con-

vincing accuracy and performance in clinical trials, great care will need to be taken to ensure

that these models are implemented in a manner that is acceptable to patients, that is well in-

tegrated into the clinical workflow, and that does not infringe on—and ideally enriches—the

integrity of the physician–patient relationship.

We note limitations to our study. In our pooled dataset, patients assigned citalopram

vastly outnumbered those prescribed other treatments, limiting the extent to which we can

be confident that we were predicting differences between four completely distinct treatment

classes. Further studies analyzing datasets with smaller class imbalances are necessary. We

recognize that while CO-MED was a randomized trial, all patients in STAR*D were initially

assigned to citalopram. However, given the very similar patient populations and study proto-

cols, we felt justified in combining the studies as if they were arms of the same study. One

limitation is that we had far fewer patients taking drugs from the CO-MED study than those

taking citalopram as part of STAR*D. This raises concerns about generalizability that could be

addressed using other larger datasets that include these treatments, and this analysis is some-

thing we have planned for future work. However, the fact that our model performed well on a

holdout set, and the fact that the model did not simply always predict that a patient should be

prescribed citalopram (see Box 1), does raise hopes for the generalizability of this kind of model

despite the class imbalance in terms of drug assigned. We do note that this particular model

was intended as a proof-of-concept and would require further elaboration and validation using

larger datasets prior to clinical implementation.

Another limitation of this work is the fact that treatments did not cross over between stud-

ies; that is, a patient could only receive escitalopram in CO-MED and citalopram in STAR*D,

meaning that treatment may potentially be confoundedwith which study a patient was enrolled
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in. The choice of the CO-MED and STAR*D datasets was made with the intent to reduce this

confound as much as possible, as CO-MED and STAR*D were very similar studies, with similar

patient outcomes, allowing for the minimization of meaningful differences between studies

that might affect patient-level response to treatment. The finding that differential prediction

is possible using a set of reasonable predictive features, many of which have been previously

found to predict antidepressant treatment response, does provide some evidence that treatment

predictions were not simply due to confounding by study. However, future work, currently in

progress, must work to address this problem of interstudy differences more directly, especially

as the data used to train models in the future expand to include more and more dissimilar

studies.

During our analyses, we identified unbalanced data in the treatment and remission vari-

able (i.e., there was a preponderance of citalopram data with respect to treatment and of nonre-

mission with respect to outcome). Unbalanced data can lead to models that do not generalize

well on external data. Given this, as stated in the section “Data Preprocessing and Feature

Selection,” we extracted a 200-subject validation set that was representative of the data based

on the treatment-assigned variable. For the remaining data, during model optimization, we

stratified our data on the remission variable. Having an external validation set that was strati-

fied by the treatment variable and a model that was trained and tested on data stratified by the

remission variable increases confidence that the model will generalize. This was supported by

the observation that in our tests on the holdout set, we saw an average 0.67 AUC (variance

± 0.03), similar to the k-fold results (0.69 AUC). Additionally, for the “actual improvement”

analysis, our bootstrapping method used random sampling with replacement; therefore each

sample was generated to be representative of the population. During the actual improvement

analysis, the data were stratified based on the remission variable to ensure that for each sample,

the model was not biased toward nonremission simply because this was the dominant class;

this serves to increase our confidence that our model’s predictions resulted from training on

a dataset that matched the true study population and was not artificially enriched with either

remitters or nonremitters.

We note that, at present, we demonstrate small advantages for deep learning compared

to the comparator method, despite being a more complex algorithm. In future work on larger

datasets, work will be done to determine if deep learning provides greater benefit than com-

parator methods, as has been noted in other areas of research (Goodfellow et al., 2016). There

is some reason for optimism on this front, given prior evidence and the ability of neural net-

works to learn complex nonlinear interactions.

CONCLUSION

We have demonstrated proof-of-concept of using a deep learning model to predict remis-

sion and to guide differential treatment selection for more than two treatments. More data

are required to validate these methods for more treatment types to create a clinically useful

tool. Furthermore, clinical trials are needed to determine if our hypothetical treatment assign-

ment is translatable to real patients. In addition, future work might examine the question of

when beginning a pharmacological treatment is most beneficial, in order to augment clinical

decision-making at this crucial juncture.

While we chose binary remission as our end point, as it is the gold standard recom-

mended by treatment guidelines, future work will also focus on differential prediction of symp-

tom reduction and the analysis of patient improvement, as well as quality of life and disability

outcomes. Work currently in progress hopes to shed more light on why different patients
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respond differentially to treatments. This will be crucial both to increase clinician trust and to

advance the study of depression pathophysiology and treatment. The flexibility and versatility

of our model support the idea that deep learning will be a useful technique going forward in

the field of personalized medicine.
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